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CHAPTER 1

Vector Spaces

Suppose a and b are real numbers, not both 0. Find real numbers ¢ and d
such that

1/(a + bi) = c + di.

SoLuTiON: Multiplying both the numerator and the denominator of the
left side of the equation above by a — bi gives

o b =c+di
a2 +b ’
Thus we must have

a -}
a? + b2 and d= a? 4- b2’

because a and b are not both 0, we are not dividing by 0.

COoMMENT: Note that these formulas for ¢ and d are derived under the
assumption that a + bi has a multiplicative inverse. However, we can forget
about the derivation and verify (using the definition of complex multiplica-
tion) that

. a b\
(a+ln)(a2+b2 - a2+b2z) =1

which shows that every nonzero complex number does indeed have a multi-
plicative inverse.
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Show that

-1+ 3i
2

is a cube root of 1 (meaning that its cube equals 1).

SOLUTION: Using the definition of complex multiplication, we have

-1+ 3 -1 —/3i
( 1-; 3)2= 12 3'

Thus

( 1+fz)

( ) ()

Prove that —(—v) = v for every v € V.
SOLUTION: Let v € V. By the definition of additive inverse, we have
v+ (—v)=0.

The additive inverse of —v, which by definition is —(—v), is the unique vector
that when added to —v gives 0. The equation above shows that v has this
property. Thus —(—v) = v.

COMMENT: Using 1.6 twice leads to another proof that —( —v) = v. How-
ever, the proof given above uses only the additive structure of V, whereas a
proof using 1.6 also uses the multiplicative structure.

Prove that if a€ F,v€ V,and av =0, then a = 0 or v = 0.
SOLUTION: Suppose that a € F, v G.V, and
av = (.

We want to prove that a = 0 or v = 0. If @ = 0, then we are done. So
suppose that a # 0. Multiplying both sides of the equation above by 1 /o
gives

%(av) =
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The associative property shows that the left side of the equation above equals
1v, which equals v. The right side of the equation above equals 0 (by 1.5).
Thus v = 0, completing the proof.

For each of the following subsets of F3, determine whether it is a subspace
of F3:

(a)  {(z1,72,73) € F3: 21 + 215 + 323 = 0};
(b) {(z1,72,2z3) € F?: 3y + 279 + 333 = 4};
() {(z1,72,73) € F3: 217975 = 0};
(d) {(z1,z2,73) € F3: 3) = 5x3}.
SoLuTioN: (a) Let
U = {(z1,22,23) € F?: 21 + 225 4 323 = 0}.

To show that U is a subspace of F3, first note that (0,0,0) e U, so U is
nonempty.

Next, suppose that (z;,z2,z3) € U and (¥1,%2,¥3) € U. Then

Ty + 229+ 323 =10
y1+2y2 +3y3 =0.

Adding these equations, we have
(z1 +y1) + 2(z2 + 32) + 3(z3 + y3) =0,
which means that (z; + 1,22 + y2,23 + y3) € U. Thus U is closed under
addition.
Next, suppose that (z;,z2,z3) € U and a € F. Then
T1 + 2z + 323 = 0.
Multiplying this equation by a, we have
(ax1) + 2(axs) + 3(az3) = 0,

which means that (az;,azs,azx3) € U. Thus U is closed under scalar multi-
plication.

Because U is a nonempty subset of F3 that is closed under addition and
scalar multiplication, U is a subspace of F3.
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(b) Let
U = {(z1,z2,23) € F? : 2, + 229 + 323 = 4}.

Then (4,0,0) € U but 0(4,0,0), which equals (0,0,0), is not in U. Thus U
is not closed under scalar multiplication. Thus U is not a subspace of F3.
(c) Let

U= {(.’131,322, 3:3) € F3 IT1T9T3 = O}

Then (1,1,0) € U and (0,0,1) € U, but the sum of these two vectors, which
equals (1,1,1), is not in U. Thus U is not closed under addition. Thus U is
not a subspace of F3,

(d) Let

U={(z1,z0,23) € F3: 5, = 5z3}.

To show that U is a subspace of F3, first note that (0,0, 0)eU,soUis
nonempty.
Next, suppose that (z1,z2,23) € U and (y3,y2,¥3) € U. Then

I = 51133
Y1 = Sys.
Adding these equations, we have
71+ y1 = 5(x3 + y3),

which means that (z1 + y1,22 + y2,%3 + y3) € U. Thus U is closed under
addition.
Next, suppose that (z;,z2,z3) € U and a € F. Then

I = 512;.3
Multiplying this equation by a, we have
az; = 5(azxs),

which means that (ez;,azs,az3) € U. Thus U is closed under scalar multi-
plication.

Because U is a nonempty subset of F3 that is closed under addition and
scalar multiplication, U is a subspace of F3.
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Give an example of a nonempty subset U of R2? such that U is closed under
addition and under taking additive inverses (meaning —u € U whenever
u € U), but U is not a subspace of R2.

SoLuTION: Let U = {(m,n) : m and n are integers}. Then clearly
U is closed under addition and under taking additive inverses. However,
(1,1) € U but §(1,1), which equals (3, ), is not in U, so U is not closed
under scalar multiplication. Thus U is not a subspace of R2.

Of course there are also many other examples.

Give an example of a nonempty subset U of R2 such that U is closed under
scalar multiplication, but U is not a subspace of R2.

SOLUTION: Let U be the union of the two coordinate axes in R2. More
precisely, let

U={(z,0):ze R}U{(0,y) : ¥y € R}.

Then clearly U is closed under scalar multiplication. However, (1,0) and
(0,1) are in U but their sum, which equals (1,1) is not in U, so U is not
closed under addition. Thus U is not a subspace of R2.

Of course there are also many other examples.

Prove that the intersection of any collection of subspaces of V is a subspace
of V.

SoLUTION: Suppose {Us}acr is a collection of subspaces of V; here I'
is an arbitrary index set. We need to prove that [, . Ua, which equals the
set of vectors that are in U, for every a € I, is a subspace of V.

The additive identity 0 is in U, for every a € T' (because each U, is a
subspace of V). Thus 0 € {\,¢p Ua- In particular, Naer Ua is 2 nonempty
subset of V.

Suppose u,v € [\,epUa- Then u,v. € U, for every @ € . Thus
u+v €Uy for every a € T' (because each U, is a subspace of V). Thus
u+v € (yer Ua- Thus Naer Ua is closed under addition.

Suppose u € [\,er Ua and @ € F. Then u € U, for every a € I". Thus
au € U, for every a € T (because each U, is a subspace of V). Thus
au € (yer Ua- Thus (N, Ua is closed under scalar multiplication.

Because () wcr Ua is a nonempty subset of V' that is closed under addition
and scalar multiplication, (|, Us is a subspace of V.

CoMMENT: For many students, the hardest part of this exercise is un-
derstanding the meaning of an arbitrary intersection of sets. Instructors who
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10.

11.

do not want to deal with this issue should change the exercise to “Prove that
the intersection of any finite collection of subspaces of V is a subspace of V.”
Many students will then prove that the intersection of two subspaces of V
is a subspace of V' and use induction to get the result for finite collections
of subspaces.

Prove that the union of two subspaces of V is.a subspace of V if and only if
one of the subspaces is contained in the other.

SoLUTION: Suppose U and W are subspaces of V such that UUW is a
subspace of V. We will use proof by contradiction to show that U C W or
W C U. Suppose that our desired result is false. Then U ¢ W and W ¢ U.
This means that there exists u € U such that u ¢ W and there exists w € W
such that w ¢ U. Because u and w are both in U UW, which is a subspace
of V, we can conclude that u+w e UUW. Thusu+w e U orut+w e W.

First consider the possibility that u+w € U. In this case w, which equals
(v + w) + (—u), would be in the sum of two elements of U and hence we
would have w € U, contradicting our assumption that w ¢ U.

Now consider the possibility that u+w € W. In this case u, which equals
(u + w) + (—w), would be in the sum of two elements of W and hence we
would have u € W, contradicting our assumption that u ¢ W.

The two paragraphs above show that u + w ¢ U and u+w ¢ W, con-
tradicting the final sentence of the first paragraph of this solution. This
contradiction completes our proof that U C W or W C U.

The other direction of this exercise is trivial: if we have two subspaces
of V, one of which is contained in the other, then the union of these two
subspaces equals the larger of them, which is a subspace of V.

Suppose that U is a subspace of V. What is U + U?

SoLuTION: By definition, U+U = {u+v: u,v € U}. Clearly U c U+U
because if u € U, then u equals u + 0, which expresses « as a sum of two
elements of U. Conversely, U +U C U because the sum of two elements of U
is an element of U (because U is a subspace of V). Conclusion: U +U = U.

Is the operation of addition on the subspaces of V commutative? Associa-
tive? (In other words, if Uy, Uy, Us are subspaces of V., is Uy + Us = Uy + U ?
Is(Uy + ) +Us =Uy + (Us + Us3)?)

SoLUTION: Suppose Uy, Uy, U; are subspaces of V.
A typical element of U; + U, is a vector of the form u; +u3, where u; € U;
and up € Us. Because addition of vectors is commutative, u; + uy equals
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up +uy, which is a typical element of U + U;. Thus Uy + Uy = Uy +U;. In
other words, the operation of addition on the subspaces of V' is commutative.

A typical element of (U; +Us) +Us is a vector of the form (u; 4 ug) +ua,
where u; € Uy, up € Us, and uz € Us. Because addition of vectors is
associative, (u1 + u2) + u3 equals u; + (uz + u3), which is a typical element
of Uy + (Uz + Us). Thus (Uy + Uz) + Us = Uy + (U2 + Us). In other words,
the operation of addition on the subspaces of V is associative.

Does the operation of addition on the subspaces of V have an additive
identity? Which subspaces have additive inverses?

SoLuTION: The subspace {0} is an additive identity for the operation
of addition on the subspaces of V. More precisely, if U is a subspace of V,
then U+ {0} = {0} +U =U.

For a subspace U of V' to have an additive inverse, there would have to
be another subspace W of V such that U + W = {0}. Because both U/ and
W are contained in U + W, this is possible only if U = W = {0}. Thus {0}
is the only subspace of V that has an additive inverse.

Prove or give a counterexample: if Uy, U, W are subspaces of V such that
Ui+ W=U+W,
then Uy = Us.

SoLuTION: To construct a counterexample for the assertion above,
choose V' to be any nonzero vector space. Let U, = {0}, Uy = V, and
W =V. Then U; + W and U; + W are both equal to V, but U, # Us.

Of course there are also many other examples.

Suppose U is the subspace of P(F) consisting of all polynomials p of the
form

p(2) = az? + b25,
where ¢,b € F. Find a subspace W of P(F) such that P(F) =U & W.

SOLUTION: Let W be the set of all polynomials (with coefficients in F)
whose z2-coefficient and z%-coefficient both equal 0. Then every polynomial

in P(F) can be written uniquely in the form p + ¢, where pEUandge W.
Thus P(F)=Uo® W.
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COMMENT: There are other passible choices for W that give a correct
solution to this exercise, but the choice for W made above is certainly the
most natural one.

Prove or give a counterexample: if U, Us, W are subspaces of V such that
V=U®W and V=U,®W,
then U; = Us.

SoLuTioN: To construct a counterexample for the assertion above, let
V=FletU ={(z0):z€F}letUp={(0,y): y € F}, and let
W ={(2,z) : z € F}. Then

F?’=U,&6W and F’=U,@W,

as is easy to verify, but U; # Us.
Of course there are also many other examples.
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Finite-Dimensional
Vector Spaces

Prove that if (v1,...,v,) spans V, then so does the list
(vl — U2,V — U3,...,Upn—1 — Uy, vn)

obtained by subtracting from each vector (except the last one) the following
vector.

SoLuTiON: Suppose (v1,...,v,) spans V. Let v € V. To show that
v € span(vy — v2,V2 — U3,...,Upn—1 — ¥Un,Uy), we need to find ay,...,a, € F
such that

v=a1(v1 —v2) +a2(v2 —v3) +...0n_1(Vn_1 — vp) + QnVn.

Rearranging terms of the equation above, we see that we need to find
ai,...,a; € F such that

(a) v=a1v1 + (a2 —a1)ve + (a3 —ag)vs + -+ - + (an — @n_1)Vn.
Because (vy,...,vy,) spans V, there exist by,...,b, € F such that

(b) v =byv; + bavy + b3v3 + - - - + bpuy,.

Comparing equations (a) and (b), we see that (a) will be satisfied if we

choose a; to equal b; and then choose a; to equal b + a; and then choose
a3 to equal b3 + a9, and so on.
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Prove that if (vj,...,v,) is linearly independent in V, then so is the list
(v1 —v2,¥2 — v3,...,Un_1 — VUn, Up)

obtained by subtracting from each vector (except the last one) the following
vector.

SoLUTION: Suppose (vy,...,v,) is linearly independent in V. To prove
that the list displayed above is linearly independent, suppose a1,...,a, € F
are such that

a1(vy —v2) +ag(va — v3) + - - + @n-1(Vn—1 — Vp) + anv, =0.
Rearranging terms, the equation above can be rewritten as
a1vy + (a2 — a1)ve + (a3 — a2)vg + - - + (@n — @n—1)vn = 0.
Because (vy,...,vn) is linearly independent, the equation above implies that

a1=0
az—a; =0
az—as =0

ap —ap—1 =0.

The first equation above tells us that a; = 0. That information, combined
with the second equation, tells us that as = 0. That information, combined
with the third equation, tells us that a3 = 0. Continue in this fashion,
getting a; = -+ = an, = 0. Thus (v; — v2,v2 — V3,...,Un_1 — Uy, Vy) is
linearly independent.

Suppose (vi,...,vy,) is linearly independént in V and w € V. Prove that if
(v1 +w,...,vn +w) is linearly dependent, then w € span(vy, ..., vs).

SoLuTION: Suppose (v) + w,...,v, + w) is linearly dependent. Then
there exist scalars a,,...,a,, not all 0, such that

ai(vi +w) + -+ + an(ve + w) = 0.
Rearranging this equation, we have

a1v; + -+ antp = —(a1 + - + an)w.
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If a; +--- + a,, were 0, then the equation above would contradict the linear
independence of (v1,...,0s). Thus a; + -+ + an # 0. Hence we can divide
both sides of the equation above by —(a; + --- + a,), showing that w €
span(vy, ..., Up)-

Suppose m is a positive integer. Is the set consisting of 0 and all polynomials
with coefficients in F' and with degree equal to m a subspace of P(F)?

SoLuTION: The set consisting of 0 and all polynomials with coefficients
in F and with degree equal to m is not a subspace of P(F') because it is not
closed under addition. Specifically, the sum of two polynomials of degree m
may be a polynomial with degree less than m. For example, suppose m = 2.
Then 7 + 4z + 522 and 1 + 22 — 522 are both polynomials of degree 2 but
their sum, which equals 8 + 6z, is a polynomial of degree 1.

Prove that F* is infinite dimensional.

SoLuTION: For each positive integer m, let e, be the element of F®

whose m!! coordinate equals 1 and whose other coordinates equal O:
em = (0,...,0,1,0,...).
T
m® coordinate
Then (ey, ..., em) is a linearly independent list of vectors in F°, as is easy

to verify. This implies, by the marginal comment attached to 2.6, that F>®
is infinite dimensional.

Prove that the real vector space consisting of all continuous real-valued
functions on the interval [0, 1] is infinite dimensional.

SoLuTtioN: Let V denote the real vector space of all continuous real-
valued functions on the interval [0, 1]. For each positive integer m, the list
(1,z,...,2™) is linearly independent in V (because if ag,...,am € R are
such that

atar+t---+anzm =0

for every z € [0,1], then the polynomial above has infinitely many roots
and hence all its coefficients must equal 0). This implies, by the marginal
comment attached to 2.6, that V is infinite dimensional.
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Prove that V is infinite dimensional if and only if there is a sequence
v1,vg,... of vectors in V such that (v),...,v,) is linearly independent for
every positive integer n.

SoLUTION: First suppose that V is infinite dimensional. Choose v;
to be any nonzero vector in V. Choose v9,v3,... by the following induc-
tive process: suppose that vy,...,v,—1 have been chosen; choose any vector
vn € V such that v, & span(vy,...,v,—1)—because V is not finite dimen-
sional, span(vy,...,vn—;) cannot equal V so choosing v, in this fashion is
possible. The linear dependence lemma (2.4) implies that (v1,...,v,) is
linearly independent for every positive integer n, as desired.

Conversely, suppose there is a sequence v;,vs,... of vectors in V such
that (vi,...,vs) is linearly independent for cvery positive integer n. This
implies, by the marginal comment attached to 2.6, that V is infinite dimen-
sional.

Let U be the subspace of R defined by
U = {(z1, %2, 73,24,25) € R® : 7; = 3z and 73 = Tz4}.
Find a basis of U.

SoLuTioN: Obviously
U = {(3z2, 2, 724,74, %5) : 2,24, 75 € R}.
From this representation of U, we see casily that
(3,1,0,0,0),(0,0,7,1,0),(0,0,0,0,1))

is a basis of U.
Of course there are also other possible choices of bases of U.

Prove or disprove: there exists a basis (po, p1, p2, p3) of P3(F) such that none
of the polynomials pg, p1, p2, p3 has degree 2.

SoLuTioN: Define py, p1,p2,p3 € P3(F) by

po(z) =1,

n(z) =z,
pa(z) = 2% + 22,
p3(z) = 25
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None of the polynomials pg,p;1, p2,p3 has degree 2, but (pg,p;,p2,p3) is a
basis of P3(F), as is easy to verify.

Of course there are also other possible choices of bases of P3(F) without
using polynomials of degree 2.

Suppose that V is finite dimensional, with dimV = n. Prove that there
exist one-dimensional subspaces Uj,...,Uy of V such that

V=Ui&---®U,.

SoLuTION: Let (v1,...,vs) be a basis of V. For each j, let U; equal
span(v;); in other words, U; = {av; : a € F}. Because (vy,...,v,) is a basis
of V, each vector in V can be written uniquely in the form

a1V + -+ apy,

where a1,...,a, € F (see 2.8). By definition of direct sum, this means that
V=U:8---0U,.

Suppose that V is finite dimensional and U is a subspace of V such that
dimU =dimV. Prove that U = V.

SoLuTION: Let (ui,...,un) be a basis of U. Thus n = dimU, and
by hypothesis we also have n = dimV. Thus (uy,...,u,) is a linearly
independent (because it is a basis of U) list of vectors in V with length
dimV. From 2.17, we see that (u;,...,u,) is a basis of V. In particular
every vector in V is a linear combination of (u1,...,u,). Because each
u; € U, this implies that U = V.

Suppose that po,p1,...,pm are polynomials in Pp,(F) such that p;(2) =0
for cach j. Prove that (po,p1,...,Pm) is not linearly independent in Py, (F).

SoLuTiON: Because p;j(2) = O for each j, the constant polynomial 1 is
not in span(po, . . ., pm)- Thus (pp,...,pm) is not a basis of P,,(F). Because
(P0,--.+Pm) is a list of length m + 1 and P,,(F) has dimension m + 1, this
implies (by 2.17) that (pp,...,pm) is not linearly independent.

Suppose U and W are subspaces of R® such that dimU = 3, dimW = 5,
and U + W = R3. Prove that U NnW = {0}.

SoLUTION: We know (from 2.18) that

dim(U + W) = dimU + dim W — dim(U N W).
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Because dim(U + W) = 8, dimU = 3, and dimW = 5, this implies that
dim(UNWY) =0. Thus UNW = {0}.

Suppose that U and W are both five-dimensional subspaces of R?. Prove
that Un W # {0}.

SoLuTION: Using 2.18 we have
9 > dim(U + W)

=dimU + dim W — dim(U N W)
=10 — dim(U N W).

Thus dim(U N W) > 1. In particular, U N W # {0}.

You might guess, by analogy with the formula for the number of elements
in the union of three subsets of a finite set, that if U;, Uy, Us are subspaces
of a finite-dimensional vector space, then

dim(U; + Uz + Us)
=dimU; +dim U + dim Us
— dim(U; NU3) — dim(U; N U3) — dim(Us N U;)
+ dim(U1 NU; N U3).

Prove this or give a counterexample.
SoLuTioN: To give a counterexample, let V = R2, and let

U = {(z,0): z € R},
Uz ={(0,y) : y € R},
Us = {(z,z) : z € R}.

Then U; + Us + Us = R2, so dim(U, + Us + Us) = 2. However,
dimU; = dimU, = dimUs = 1
and
dim(U; NUs) = dim(Uy NUs) = dim(Up N Us) = dim(U; N Uy N U3) = 0.

Thus in this case our guess would reduce to the formula 2 = 3, which
obviously is false.
Of course there arc also many other examples.
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16. Prove that if V is finite dimensional and Uj,...,U,, are subspaces of V,
then ,
dim(Uy +--- + Up) <dimU; + - - + dim Up,.
SoLuTiON: For each j = 1,...m, choose a basis for U;. Put these
bases together to form a single list of vectors in V. Clearly this list spans
Ui+ -+Up,. Hence the dimension of U +- - - +Uy, is less than or equal to the
number of vectors in this list (by 2.10), which equals dim U} + - -+ + dim Up,.
In other words,
dim(U; + -+ Up) <dimUj + - - - + dim Uy,.
17.  Suppose V is finite dimensional. Prove that if Uy, ..., U, are subspaces of V

such that V=U; ®--- ®U,,, then
dimV =dimU, +--- +dimU,,.

CoOMMENT: This exercise deepens the analogy between direct sums of
subspaces and disjoint unions of subsets. Specifically, compare this exercise
to the following obvious statement: if a finite set is written as a disjoint
union of subsets, then the number of elements in the set equals the sum of
the number of elements in the disjoint subsets.

SoLuTIiON: Suppose that Uy,..., U, are subspaces of V such that V =
Ui®---®Uy,. For each j =1,...m, choose a basis for U;. Put these bases
together to form a single list B of vectorsin V. Clearly B spans U;+- - ++Up,
which equals V. If we show that B is also linearly independent, then it will
be a basis of V. Thus the dimension of V will equal the number of vectors B.
In other words, we will have

dimV =dimU; +--- +dim Up,,

as desired. :

We still need to show that B is lincarly independent. To do this, suppose
that some linear combination of B equals 0. Write this linear combination
as u; + - - - + u;m, where we have grouped together the terms that come from
the basis vectors of U; and called their sum w;, and similarly up to up,.
Thus we have

uy+---+uyp =0,

where each u; € U;. Because V =U; @ - - - @ U, this implies that each v;
equals 0. Becausc cach u; is a linear combination of our basis of Uj, all the
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coefficients in the linear combination defining u; must equal 0. Thus all the
coefficients in our original linear combination of B must equal 0. In other
words, B is linearly independent, completing our proof.
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Linear Maps

Show that every linear map from a one-dimensional vector space to itself is
multiplication by some scalar. More precisely, prove that if dimV = 1 and
T € L(V,V), then there exists a € F such that Tv =av forallv e V.

SoLUTION: Suppose dimV =1 and T € L(V, V). Let u be any nonzero
vector in V. Then every vector in V is a scalar multiple of u. In particular,
Tu =au for some a € F.

Now consider a typical vector v € V. There exists b € F such that
v = bu. Thus

Tv = T'(bu)
= bT'(u)
= b(au)
= a(bu)

= av.
Give an example of a function f: R? — R such that
fav) = af(v)
for all e € R and all v € R? but f is not linear.
SoLuTiON: Define f: R? —» R by
flz,y) = (= +y°) 2

Then f(av) = af(v) for all e € R and all v € R2. However, f is not lincar
because f(1,0) =1 and f(0,1) =1 but

17
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f((1,00+(0,1)) = £(1,1)
—91/3

# £(1,0) + £(0,1).
Of course there are also many other examples.

CoMMENT: This exercise shows that homogeneity alone is not enough
to imply that a function is a linear map. Additivity alone is also not enough
to imply that a function is a linear map, although the proof of this involves
advanced tools that are beyond the scope of this book.

Suppose that V is finite dimensional. Prove that any linear map on a sub-
space of V can be extended to a linear map on V. In other words, show that
if U is a subspace of V and S € L(U, W), then there exists T € L(V, W)
such that Tu = Su for all u € U.

SoLuTION:  Suppose U is a subspace of V and S € L(U,W). Let
(u1,...,um) be a basis of U. Then (u1,...,un) is a linearly independent list
of vectors in V, and so can be extended to a basis (u1,...,%Umn,v1,...,vp)
of V (by 2.12). Define T € L(V,W) by

T(alul +...anum + v+ ... bnvn) =a;8u; +-+-+ A Sum,.
ThenTu=SuforallueU.
COMMENT: Defining T: V — W by

Sv ifveU;
Ty =
0 ifvgU.

does not work because this map is not linear.

Suppose that T is a linear map from V to F. Prove that if » € V is not in
null 7', then ,

V=nullT® {av:a€F}.

SOLUTION: Suppose u € V is not in nullT". If ¢ € F and au € null T,
then 0 = T'(au) = aTu, which implies that a = 0 (because Tu # 0). Thus

nullT'N {eu: a € F} = {0}.

If v e V, then
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Note that T (v — £¥u) = Tv—%Tu = 0. Thus the equation above expresses
an arbitrary vector v € V as the sum of a vector in nullT" and a scalar
multiple of . Hence V = nullT + {au:a € F}. Using 1.9, we conclude
that V =nullT & {au:a € F}.

Suppose that T' € L(V, W) is injective and (v1,...,,) is linearly indepen-
dent in V. Prove that (T'vy,...,Tv,) is linearly independent in W.

SoLuTiON: To show that (T'vy, ..., Tv,) is linearly independent, suppose
ay,...,a, € F are such that

aTvi+---+aTv, =0.
Because T is a linear map, this equation can be rewritten as
T(a1v1 + -+ + apv,) =0.
Because T is injective, this implies that
ajv1 +---+ayv, =0.

Because (v, ..., v,) is linearly independent, the equation above implies that
a; =---=an =0. Thus (Tvy,...,Tv,) is linearly independent.

Prove that if S1,..., S, are injective linear maps such that S ...S, makes
sense, then Sy...S, is injective.

SoLuTION: Suppose that Sy,..., S, are injective linear maps such that
S1 ... 5, makes sense (which means that the domains of S, ..., S, are such
that S; ... S, is well defined). Suppose v is,a vector in the domain of S ... S,
(which equals the domain of Sy,) such that

(S] ...Sn)‘U =0Q.

To show that S; ... S, is injective, we need to show that v =0 (see 3.2). To
do this, rewrite the equation above as

51 ((Sg “en Sn)‘U) =0.

Because S is injective, this implies that
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(SQ . .Sn)v =0.
The same argument, now applied to the equation above, shows that
(S3 .. .Sn)v =0.
Repeat this process until reaching the equation S,v = 0, which implies
(because S, is injective) that v = 0, as desired.
7.  Prove that if (v1,...,vs) spans V and T € L(V,W) is surjective, then
(Tv,...,Tv,) spans W.
SoLuTION: Suppose that (vi,...,v,) spans V and T € L(V, W) is sur-
jective. Let w € W. Because T is surjective, there exists v € V such that
Tv = w. Because (vy,...,v,) spans V, there exist a;,...,a, € F such that
v=aVy +---+apvn.
Applying T to both sides of this equation, we get
Tv=a1Tvy+ -+« + ayTvy,.
Because Tv = w, the equation above implies that w € span(T'vy,...,Tv,).
Because w was an arbitrary vector in W, this implies that (Tv;,...,Tvy,)
spans W.
8. Suppose that V is finite dimensional and that T € L£L(V,W). Prove that

there exists a subspace U of V such that U NnullT = {0} and rangeT =
{Tu:ueU}.

SoLUTION: There exists a subspace U of V such that
V=mullTeU,;

this follows from 2.13 (with null T playing the role of U and U playing the
role of W).

From the definition of direct sum, we have U NnullT = {0}.

Obviously rangeT D {Tu : u € U}. To prove the inclusion in the other
direction, suppose v € V. Then there exist w € nullT and «' € U such that

v=w+1.

Applying T to both sides of this equation, we have Tv = Tw + Tu' = Tu'.
Thus T'v € {Tu: u € U}. Because v was an arbitrary vector in V (and thus
Tv is an arbitrary vector in rangeT), this implies that
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10.

11.

rangeT C {Tu:u € U}.
Thus range T = {Tw : u € U}, as desired.
Prove that if T is a linear map from F4 to F? such that
null T = {(z1,Z2,Z3,74) €F: ) = 525 and z3 = Tz4},
then T is surjective. A

SoLuTION: Suppose T € L£( F4,F?) is such that nullT is as above.
Then ((5,1,0,0),(0,0,7,1)) is a basis of null T, and hence dimnull T = 2.
From 3.4 we have

dimrange T = dim F* — dimnull T
=4-2
=2

Because range T is a two-dimensional subspace of R?, we have range T = R2.
In other words, T is surjective.

Prove that there does not exist a linear map from F® to F? whose null space
equals

{(z1,%2,%3,74,25) € F® : ] =325 and 73 = 74 = zs5}.

SoLuTION: Suppose U is the subspace of F3 displayed above. Then
((3,1,0,0,0),(0,0,1,1,1)) is a basis of U, and hence dimU = 2.
If T € £(F®% F?) then from 3.4 we have

dimnull T = dim F® — dimrange T

=05 —dimrangeT
>3
> dim U,

where the first incquality holds because range T C F2. The inequality above
shows that if T € £(F5, F?), then null T # U, as desired.

Prove that if there exists a linear map on V' whose null space and range are
both finite dimensional, then V is finite dimensional.

SOLUTION: Suppose there exists a linear map T from V into some vec-
tor space such that nullT and rangeT are both finite dimensional. Thus
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there exist vectors uj,...,um € V and wi,...,w, € rangeT such that
(u1,..-;um) spans nullT and (wy,...,wn) spans rangeT. Because each
wj € range T', there exists vj € V such that w; = Tv;.

Suppose v € V. Then T € rangeT, so there exist by,...,b, € F such
that

Tv =bjwy + -+ + bywy
=b1Tvy+---+b,Tv,
= T(blvl +... bnvn).
The equation above implies that T(v — byv; — --- — byv,) = 0. In other
words, v — bjvy — -+ - — bpv, € nullT. Thus there exist ay,...,a, € F such
that
v—bivy — - —bpup = a1u; + -+ + apum.
The equation above can be rewritten as
v=a1u; + -+ ety + bivy + -+ + by,
The equation above shows that an arbitrary vector v € V is a linear com-
bination of (u1,...,%m,v1,...,v5). In other words, (u1,...,%m,v1,--.,0n)
spans V. Thus V is finite dimensional.

CoMMENT: The hypothesis of 3.4 is that V is finite dimensional (which
is what we are trying to prove in this exercise), so 3.4 cannot be used in this
exercise.

12.  Suppose that V and W are both finite dimensional. Prove that there exists

a surjective linear map from V onto W if and only if dimW < dimV.

SoLuTiON: First suppose that there exists a surjective linear map T
from V onto W. Then

dim W = dimrange T
=dimV —-dimnullT
<dimV,

where the second equality comes from 3.4.

To prove the other direction, now suppose that dimW < dimV. Let
(w1,...,wm) be a basis of W and let (vq,...,v,) be a basis of V. For
ai,...,an € F define T(a1v;, + - -- + apvy) by
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14.

T(aqv1 + -+ + QnVn) = QW) + -+ + CWn-

Because dim W < dim V, we have m < n and so a., on the right side of the
equation above makes sense. Clearly T is a surjective linear map from V
onto W.

Suppose that V and W are finite dimensional and that U is a subspace
of V. Prove that there exists T € £(V, W) such that nullT' = U if and only
if dimU > dimV — dim W.

SoLUTION: First suppose that there exists T € L(V,W) such that
null T = U. Then

dimU =dimnullT
=dimV — dimrangeT
>dimV —dim W,

where the second equality comes from 3.4.

To prove the other direction, now suppose that dimU > dim V —dim W.
Let (u1,-..,um) be a basis of U. Extend to a basis (u1,.-.,Um,V1,...,Vn)
of V. Let (wy,...,wp) be a basis of W. For ay,...,am,b1,...,b, € F define
T(ayuy + - + @mUm + byvy +--- +bpvy) by

T(a1u; + -+ + amum + bivy + -+ + bpvy) = bywy + -+ - + bpwp.

Because dim W > dim V —dim U, we have p > n and so w;,, on the right side
of the equation above makes sense. Clearly T € £(V,W) and nullT = U.

Suppose that W is finite dimensional and T € L(V,W). Prove that T is
injective if and only if there exists S € £L(W, V) such that ST is the identity
map on V.

SoLuTION: First suppose that T is injective. Define S': rangeT — V
by

S5'(Tv) = v;

because T is injective, each element of rangeT can be represented in the
form T'v in only one way, so T is well defined. As can be easily checked, S’
is a linear map on range T". By Exercise 3 of this chapter, S’ can be extended
to a linear map S € L(W, V). If v € V, then (ST)v = S(Tv) = §'(Tv) = v.
Thus ST is the identity map on V, as desired.
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16.

To prove the implication in the other direction, now suppose that there
exists S € L(W, V) such that ST is the identity map on V. If u,v € V are
such that T'w = T'v, then

u=(ST)(u) = S(Tu) = S(Tv) = (ST)v=v
and hence v = v. Thus T is injective, as desired.

Suppose that V is finite dimensional and T € £(V,W). Prove that T is
surjective if and only if there exists S € L(W, V) such that T'S is the identity
map on W.

SoLuTioN: First suppose that T is surjective. Thus W, which equals
rangeT', is finite dimensional (by 3.4). Let (wj,...,wn) be a basis of W.
Because T is surjective, for each j there exists v; € V such that w; = Tvj.
Define S € L(W, V) by

S(a1wr + -+ + amWn) = a1v1 + -+ - + AmUm.-
Then

(TS)arw + - -+ + amwm) = T(a1v1 + -+ + Q)
=aiTvy + -+ apTun,
=aqw + -+ anpWm. )
Thus T'S is the identity map on W.
To prove the implication in the other direction, now suppose that there
exists S € L(W, V) such that TS is the identity map on W. If w € W, then

w = T(Sw), and hence w € rangeT. Thus rangeT = W. In other words, T'
is surjective, as desired.

Suppose that U and V are finite-dimensional vector spaces and that S €
L(V,W), T € L(U,V). Prove that

dimnull ST < dimnull § + dim null T~.

SOLUTION: Define a linear map T': nullST — V by TVu = Tu. If
u € null ST, then S(T'u) = 0, which means that Tu € null S. In other
words, rangeTY C null S. Now

dim null ST = dimnull 77 + dim range T"
< dimnull7’ +dimnull $
<dimnull T + dim null S,
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18.

where the first line follows from 3.4 (applied to T"), the second line holds
because range TV C null S, and the third line holds because of the obvious
inclusion null 7V C null T

Prove that the distributive property holds for matrix addition and matrix
multiplication. In other words, suppose A, B, and C are matrices whose
sizes are such that A(B+C) makes sense. Prove that AB+ AC makes sense
and that A(B+ C) = AB + AC.

SoLuTiOoN: Because A(B+C) makes sense, B and C must have the same
size. Furthermore, the number of columns of A (let’s call this number n)
must equal the number of rows of B and C. All this means that AB + AC
makes sense.

To prove that A(B + C) = AB + AC, just use the definition of matrix
addition, the definition of matrix multiplication, and the usual distributive
property for elements of F. Specifically, let dj'k, bjk, and c;x denote the
entries in row j, column k of A, B, and C, respectively. The entry in row j,
column k of B + C is bjx + cjx. Thus the entry in row j, column k of
AB+C)is

n
Z aj,f(br,k + cr)k)’
r=1

which equals

n n
Z aj,rbr,k + Z @ rCrk,
r=1 r=1

which equals the entry in row j, column k of AB + AC, as desired.

Prove that matrix multiplication is associative. In other words, suppose A,
B, and C are matrices whose sizes are such that (AB)C makes sense. Prove
that A(BC) makes sense and that (AB)C A(BC).

SoLuTION: This exercise can be done by a brute force calculation, in
the style of the solution to the previous exercise. Here is a solution that uses
only the associativity of the product of linear maps (which is easy to verify
because composition of functions is clearly associative) and the nice property
that the matrix of the product of two linear maps equals the product of the
matrices of the two linear maps (see 3.11).

Suppose A is an m-by-n matrix, B is an n-by-p matrix, and C is a p-by-q
matrix; the sizes much match up like this in order for (AB)C to make sense.
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Let R € L(F™,F™),S € L(F?,F"),T € L(F9,FP) be such that, with respect
to the standard bases, M(R) = A, M(S) = B, M(T) = C; 3.19 insures that
such linear maps exist. Now

(AB)C = (M(R)M(S)) M(T)
= M(RS)M(T)
= M((RS)T)
= M(R(ST))
= M(R)M(ST)
= M(R)(M(S)M(T))
= A(BC).

Suppose T € L(F",F™) and that

an, ... Qin
M(T)=| N

Qm1l .- Qmn
where we are using the standard bases. Prove that
T(z1,...,Tn) = (@11%1 + - + @1 aZny .-, Cm1T1 + * * - + Q)
for every (z1,...,2,) € F".
CoMMENT: This exercise shows T has the form promised on page 39.

SoLuTiON: Let £ = (zy,...,z,) € F". Using the standard bases, we
then have

M(Tz) = M(T)M(z)

ai1 ... Qin L]

i Cm,1 -.- Qman In

a1,1Z1+ -+ a1 ny

| Gm1Z1 + -+ ATy

where the first equality comes from 3.14. The last equation implies that
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Tz = (a11Z1 4 -+ 4 Q1,a%n, - -, G 1T1 + - - + G nTn),
as desired.

20. Suppose (vy,...,v,) is a basis of V. Prove that the function T: V —
Mat(n, 1, F) defined by

Tv = M(v)

is an invertible linear map of V' onto Mat(n, 1, F'); here M(v) is the matrix
of v € V with respect to the basis (vy,...,vn).

SOLUTION: Suppose u,w € V. We can write
u=av1+--+apv, and w=bv;+---+brv,
for some ay,...,an,b1,...,b, € F. Thus
ut+w=(a; +b)vi+---+ (an + by)vn.
Hence

T(u+w) = M(u+ w)

[ a1 +b;
‘_an+bn
—al bl
=|: |+
| Gn by
= M(u) + M(w)
=Tu+ Tw,

which shows that T satisfies that additivity property required for linearity.
If ce F, then

cu =cajv) + -+ Canvn.

Hence



28

CHAPTER 3. Linear Maps

21.

T(cu) = M(cu)
cay
can

a1

an
= cM(u)
= cTu,

which shows that T satisfies the homogeneity property required for linearity.
Thus T is linear.

If Tu = 0, then a; = --- = a,, =0, which implies that « = 0. Thus T is
injective.

Ifey,...,cn € F, then

C
T(avi+:-+ecvp)= 1] & |,

which implies that T is surjective.
Because the linear map T is injective and surjective, it is invertible
(see 3.17).

Prove that every linear map from Mat(n, 1, F) to Mat(m, 1, F) is given by
a matrix multiplication. In other words, prove that if

Te L:(Mat(n, 1, F)’ M&t(ma i, F)))

then there exists an m-by-n matrix A such that TB = AB for every B €
Mat(n, 1,F).

SoLuTiON: The vector spaces Mat(n,1,F) and Mat(m, 1, F) have ob-
vious bases (consisting of matrices that have 0 in all entries except for a 1
in one entry). Let A be the matrix of T with respect to these bases. Note
that if B € Mat(n, 1,F), then M(B) = B and M(TB) = TB. Thus
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TB = M(TB)
= M(T)M(B)
= AB,

where the second equality comes from 3.14.

Suppose that V' is finite dimensional and S,T € L£(V). Prove that ST is
invertible if and only if both S and T are invertible.

SoLuTION: First suppose ST is invertible. Thus there exists R € £(V)
such that R(ST) = (ST)R =1. If v € V is such that Tv = 0, then

v=1Iv
= R(ST)v
=0.

Because v was an arbitrary vector in null T, this shows that nullT = {0}.
Thus T is injective (by 3.2), and hence T is invertible (by 3.21), as desired.
Ifu eV, then

u=1Iu
= (ST)Ru
= S(TRu),
which shows that « € range S. Because u was an arbitrary vector in V, this
implies that rangeS = V. Thus V is surjective, and hence V is invertible
(by 3.21), as desired.

To prove the implication in the other direction, now suppose that both
S and T are invertible. Then

(STHT187Y) = S(TrT~1)5!
=851
=1

and .
(T'IS‘I)(ST) = T—l(S_lS)T

=77
=1I
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Thus TS~ satisfies the properties required for an inverse of ST. Thus
ST is invertible and (ST)™! = T-15-1L
23.  Suppose that V is finite dimensional and S,T € L(V). Prove that ST =TI
if and only if TS = I.
SoLuTiON: First suppose that
ST =1.
Because I is invertible, the previous exercise implies that S and T are both
invertible. Multiply both sides of the equation above by 7~! on the right,
getting
S=17"
Now multiply both sides of the equation above by T on the left, getting
TS =1,
as desired.
To prove the implication in the other direction, simply reverse the roles
of § and T in the direction we have already proved, showing that if TS = I,
then ST = 1.
24.  Suppose that V is finite dimensional and T € L(V). Prove that T is a scalar

multiple of the identity if and only if ST = T'S for every S € L(V).

SoLuTioN: First suppose that T' = al for some a € F. Let § € L(V).
Then

ST = S(al)

To prove the implication in the other direction, suppose now that ST =
TS for all S € L(V). We begin by proving that (v, Tv) is linearly dependent
for every v € V. To do this, fix v € V, and suppose that (v, T'v) is linearly
independent. Then (v,Tv) can be extended to a basis (v, Tv,uy,...,un)
of V. Define S € L(V) by

S(av +bTv + cruy + -+ + crun) = bv.
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Thus S(Tv) = v and Sv = 0. Thus the equation S(Tv) = T(Sv) becomes
the equation v = 0, a contradiction because (v,Tv) was assumed to be
linearly independent. This contradiction shows that (v,Tv) is linearly de-
pendent for every v € V. This implies that for each v € V'\ {0}, there exists
ay, € F such that

Tv = ayv.

To show that T is a scalar multiple of the identity, we must show that a,
is independent of v. To do this, suppose v,w € V \ {0}. We want to show
that a, = a,. First consider the case where (v, w) is linearly dependent.
Then there exists b € F such that w = bv. We have

a,w=Tw
= T'(bv)
=bTv
= b(ayv)

= ayw,

which shows that a, = a, as desired.
Finally, consider the case where (v, w) is linearly independent. We have

Gutw(v +w) = T(v + w)
=Tv+Tw

= ay? + W,
which implies that
(av+w — @)V + (@p4w — aw)w = 0.

Because (v,w) is linearly independent, this implies that ay4+, = a, and
Qyiy = Gy, SO again we have ¢, = a,, as desired.

Prove that if V is finite dimensional with dimV > 1, then the set of non-
invertible operators on V is not a subspace of L(V).

SOLUTION: Suppose that V is finite dimensional with dim V > 1. Let
n=dimV and let (vy,...,vs) be a basis of V. Define S,T € L(V) by

S(a1u1 +---+ anvn) =av

and
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T(a1v1 + - - + apvp) = agvs + - - + apvy,.

Then § is not injective because Svz = 0 (this is where we use the hypothesis
that dim V' > 1), and T is not injective because Tw; = 0. Thus both S and
T are not invertible. However, S+ T equals I, which is invertible. Thus the
set of noninvertible operators on V is not closed under addition, and hence
it is not a subspace of L(V).

COMMENT: IfdimV =1, then the set of noninvertible operators on V
equals {0}, which is a subspace of L(V).

Suppose n is a positive integer and a;; € F for i,j = 1,...,n. Prove that
the following are equivalent:

(a) The trivial solution 7 = --- = z, = 0 is the only solution to the
homogeneous system of equations

n
Zal,k:nk =0
k=1

n
Z Qn kTi = 0.
k=1

(b) For every ci,...,cn € F, there exists a solution to the system of
equations

n
Zal,kzk =a
k=1

n
D nkTk = Cn.
k=1

Note that here we have the same number of equations as variables.

SoLuTION: Define T € L(F") by

n n
T($l1 [REE] -T'n) = (Zal,kzkr ey Zan,kzk)-
k=1 k=1

Then (a) above is the assertion that T is injective, and (b) above is the
assertion that T is surjective. By 3.21, these two assertions are equivalent.
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Suppose m and n are positive integers with m < n. Prove that there exists
a polynomial p € P,(F) with exactly m distinct roots.

SOLUTION: Define p € P,(F) by
p(z)=(z—1)""™(z-2)(2-3)...(z - m).

Then p is a polynomial of degree n with exactly m distinct roots (which are
1,...,m).

Suppose that 2y, ..., zm4) are distinct elements of F and Wiyeor, Wny1 € F.
Prove that there exists a unique polynomial p € Pm(F) such that

p(zj) = w;
forj=1,...,m+1.
SOLUTION: Define T': P (F) — F™+! by

Tp = (p(21),- - -, P(2m1))-

We need to prove that T is injective (which implies that at most one polyno-
mial p satisfies the condition required by the exercise) and surjective (which
implies that at least one polynomial p satisfies the condition required by the
exercise). 7

Clearly T is a linear map. If p € null T, then

p(z1) = -+ = p(zm41) =0,

which means that p is a polynomial of degree m with at least m + 1 distinct
roots, which means that p = 0 (by 4.3). Thus p is injective, as desired.

33
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Now
dimrangeT = dim Pp,(F) — dimnull T

=(m+1) -

= dim F™!,
where the first equality comes from 3.4 and the second equality holds because
nullT = {0}. The last equality above implies that range T = F™t!. Thus
T is surjective, as desired.

COMMENT: Surjectivity of T' can also be proved by using an explicit
construction. But linear algebra, specifically 3.4, gives us surjectivity easily
once we get injectivity. -

3. Prove that if p,q € P(F), with p # 0, then there exist unique polynomials

s, € P(F) such that
g=sp+r

and degr < degp. In other words, add a uniqueness statement to the
division algorithm (4.5).

SOLUTION: Suppose p,q € P(F), with p # 0. We know from the division
algorithm (4.5) that there exist s,r € P(F), with degr < degp, such that

g=sp+r.

To prove that s and r are unique, suppose that 3,7 are in P(F), with
degT < degp and

g=35p+r.
Subtracting the last two equations are rearranging, we have
(—sp=r—-r.

The right side of the equation above is a polynomial whose degree is less
than degp. If 5 were not equal to s, then the left side of the equation above
would be a polynomial whose degree is at least degp. Thus we must have
§ = s, which, from the equation above, implies that ¥ = r. Thus the choices
of s and r were indeed unique.
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Suppose p € P(C) has degree m. Prove that p has m distinct roots if and
only if p and its derivative p’ have no roots in common.

SoLuTION: First suppose that p has m distinct roots. Because p has
degree m, this implies that p can be written in the form

p(2)=c(z—\1)...(2z - Am),

where Aj,..., A, are distinct. To prove that p and g’ have no roots in
common, we must show that p/(};) # 0 for each j. To do this, fix j. The
expression above for p shows that we can write p in the form

p(2) = (2 — Aj)q(2),

where g is a polynomial such that g(A;) # 0. Differentiating both sides of
this equation, we have

P'(2) = (z = Aj)d'(2) + g(2).
Thus
p'(A5) = a(A5)
# Oa

as desired.

To prove the other direction, we will proved the contrapositive, meaning
that we will prove that if p has less than m distinct roots, then p and p/
have at least one root in common. To do this, suppose that p has less than
m distinct roots. Then for some root A of p, we can write p in the form

p(z) = (2 — A)"q(2),

where n > 2 and ¢ is a polynomial. Differentiating both sides of this equa-
tion, we have

P'(2) = (2= A)"¢(2) + n(z — A)*q(2).
Thus p/(A\) = 0, and so A is a common root of p and p’, as desired.

Prove that every polynomial with odd degree and real coefficients has a real
root.

SOLUTION: Suppose that p is a polynomial with odd degree and real
coefficients. By 4.14, p is a constant times the product of factors of the form
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z — A and/or 22 + az + 8, where A,a, 8 € R. Not all the factors can be of
the form 72 + az + f, because otherwise p would have even degree. Thus at
least one factor must be of the form = — A. Any such A is a real root of p.

CoOMMENT: Here is another proof, using calculus but not using 4.14.
Suppose p is a polynomial with odd degree m. We can write p in the form

p(z) =ao+aix+ - +amz™,

where ag,...,am € R and e, # 0. Replacing p with —p if necessary, we
can assume that a,, > 0. Now

ay Am—1

Qg
p(.'E) =Zm($—m+ Zm—1 + -4+ z +am).
This implies that
lim p(z)=-00 and lim p(z) = oo.
T=r—00 —00

The intermediate value theorem now implies that there is a real number A\
such that p(A) = 0. In other words, p has a real root.



CHAPTER 5

Eigenvalues and Eigenvectors

Suppose T € L(V). Prove that if U),...,U,, are subspaces of V invariant
under T, then Uy + - -« 4+ Uy, is invariant under 7.

SoLUTION: Suppose Uy,...,Uy, are subspaces of V invariant under 7.
Consider a vector u € Uy + -+ + Up,. There exist u; € Uy,...,um € U
such that

u=u + -+ Uy
Applying T to both sides of this equation, we get
Tu="Tu; + -+ Tup,.

Because each Uj; is invariant under T, we have Tw; € Uy,...,Tum € Upn.
Thus the equation above shows that Tu € Uy + - - - 4+ Uy, which implies that
Uy + -+ Uy, is invariant under 7.

Suppose T € L(V). Prove that the intersection of any collection of subspaces
of V invariant under T is invariant under 7.

SoLUTION: Suppose {Uq }acr is a collection of subspaces of V invariant
under T; here I is an arbitrary index set. We need to prove that Naer Ve
which equals the set of vectors that are in U, for every a € T, is invariant
under T. To do this, suppose u € [, Ua. Then u € U, for every a € I.
- Thus Tu € U, for every a € I" (because every U, is invariant under T).
Thus Tu € (\,er Ua, which implies that (¢ Uq is invariant under T.

Prove or give a counterexample: if U is a subspace of V that is invariant
under every operator on V, then U = {0} or U = V.

37
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SOLUTION: We will prove that if U is a subspace of V that is invariant
under every operator on V, then U = {0} or U = V. Actually we will prove
the (logically equivalent) contrapositive, meaning that we will prove that
if U is a subspace of V such that U # {0} and U # V, then there exists
T € L(V) such that U is not invariant under T. To do this, suppose U is a
subspace of V such that U # {0} and U # V. Choose u € U \ {0} (this is
possible because U # {0}) and w € V' \ U (this is possible because U # V).
Extend the list (u), which is linearly independent because u # 0, to a basis
(u,v1,...,v;) of V. Define T € L(V) by

T(au+ byvy +...byv,) = aw.

Thus Tu = w. Because u € U but w ¢ U, this shows that U is not invariant
under T, as desired.

Suppose that S, T € L(V) are such that ST = T'S. Prove that null(T — AI)
is invariant under S for every A € F.

SoLuTioN: Fix A € F. Suppose v € null(T — AI). Then

(T - AI)(Sv) = TSv — ASv

= 8Tv — ASv
= S(Tv — \v)
= 0.

Thus Sv € null(T’ — AI). Hence null{(T — AI) is invariant under S.
Define T' € L(F?) by

T(w,z) = (2,w).
Find all eigenvalues and eigenvectors of T

SoLUTION: Suppose A is an eigenvalue of T'. For this particular operator,
the eigenvalue-eigenvector equation T'(w, z) = A(w, 2) becomes the system
of equations

z=Aw

w= Az.

Substituting the value for z from the first equation into the second equation
gives w = A2w. Thus 1 = A2 (we can ignore the possibility that w = 0
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because if w = 0, then the first equation above implies that z = 0). Thus
A=1or A = —1. The set of eigenvectors corresponding to the eigenvalue 1
is

{(w,w) : w € F};
The set of eigenvectors corresponding to the eigenvalue —1 is
{(w,—w) : w € F}.
Define T' € L(F3) by
T(21, 22, 23) = (222,0, 523).
Find all eigenvalues and eigenvectors of T

SoLUTION: Suppose A is an eigenvalue of T'. For this particular operator,
the eigenvalue-eigenvector equation T'(z1, 2, z3) = A(21, 22, 23) becomes the
system of equations

2z2 = /\z]_
0= Az
523 = /\23.

If A # 0, then the second equation implies that 29 = 0, and the first
equation then implies that 2; = 0. Because an eigenvalue must have a
nonzero eigenvector, there must be a solution to the system above with
23 # 0. The third equation then shows that A = 5. In other words, 5 is the
only nonzero eigenvalue of T. The set of eigenvectors corresponding to the
eigenvalue 5 is

{(0101 23) 123 € F}

If A = 0, the first and third equations above show that z3 = 0 and 23 = 0.
With these values for 2o, z3, the equations above are satisfied for all values
of z;. Thus 0 is an eigenvalue of T. The set of eigenvectors corresponding
to the eigenvalue 0 is

{(21,0, 0) ) € F}
Suppose n is a positive integer'and T € L(F™) is defined by
T(z1,..sTn) = (T1+ -+ Ty, Ty + - + Ty);

in other words, T is the operator whose matrix (with respect to the standard
basis) consists of all 1’s. Find all eigenvalues and eigenvectors of T.
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SOLUTION: Suppose A is an eigenvalue of T. For this particular oper-
ator, the eigenvalue-eigenvector equation Tz = Ax becomes the system of
equations

Ty 4+ Ty = A1)

Ty 4+ ZTp = ATy,
Thus
)\:ltl =“‘=)\$n-

Hence either A\=0o0r z; =--- = z,,.

Consider first the possibility that A = 0. In this case all the equations in
the eigenvector-eigenvalue system of equations above become the equation
Z1 + -+ + xp = 0. Thus we see that 0 is an eigenvalue of T and that the
corresponding set of eigenvectors equals

{(ml""’mn)an:a:l""""{-In:O}.

Now consider the possibility that £; = --- = z,; let ¢ denote the com-
mon value of zj,...,T,. In this case all the equations in the eigenvector-
eigenvalue system of equations above become the equation nt = \t. Hence A
must equal n (an eigenvalue must have a nonzero eigenvector, so we can take
t # 0). Thus we see that n is an eigenvalue of T" and that the corresponding
set of eigenvectors equals

{(z1,...,zn) EF" 12y = -+ =1, }.

Because the eigenvector-eigenvalue system of equations above implies
that A =0or z; = --- = z,, we see that T has no eigenvalues other
than 0 and n.

Find all eigenvalues and eigenvectors of the backward shift operator T €
L(F>) defined by

T(21, 22,23,.-.) = (22,23,...).

SOLUTION: Suppose A is an eigenvalue of T. For this particular oper-

. ator, the eigenvalue-eigenvector equation Tz = Az becomes the system of

equations
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10.

29 = /\Zl
23 = /\z2
Z24 = AZ3

From this we see that we can choose z; arbitrarily and then solve for the
other coordinates:

29 = )\zl
z23 = AZQ = /\221

24 = A2z = A3z

Thus each A € F is an eigenvalue of T' and the set of corresponding eigen-
vectors is

{(w, Aw, X2, w...) : w e F}.

Suppose T' € £(V) and dimrangeT = k. Prove that 7" has at most & + 1
distinct eigenvalues.

SoLUTION: Let Aj,..., A, be the distinct eigenvalues of T, and let
v1,...,Vm be corresponding nonzero eigenvectors. If Aj # 0, then

T(vi/As) = vj.

Because at most one of Ay, ..., A, equals 0, this implies that at least m—1 of

the vectors vy, . .., vy, are in range T. These vectors are linearly independent
(by 5.6), which implies that

m — 1 < dimrangeT = k.
Thus m < k + 1, as desired.

Suppose T' € £(V) is invertible and A € F\{0}. Prove that X is an eigenvalue
of T if and only if } is an eigenvalue of 71,

SOLUTION: First suppose that ) is an eigenvalue of T'. Thus there exists
a nonzero vector v € V such that

Tv = Av.
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11.

12.

Applying T~! to both sides of the equation above, we get v = AT1v, which
is equivalent to the equation T v = iv. Thus % is an eigenvalue of T1.

To prove the implication in the other direction, replace T by T~1 and A\
by % and then apply the result from the paragraph above.

Suppose S, T € L(V). Prove that ST and T'S have the same eigenvalues.

SOLUTION: Suppose that A € F is an eigenvalue of ST We want to
prove that X is an eigenvalue of T'S. Because A is an eigenvalue of ST, there
exists a nonzero vector v € V such that

(ST = M.
Now

(T'S)(Tv) = T(STv)
= T(\v)
= ATv.

If Tv # 0, then the equation above shows that A is an eigenvalue of TS, as
desired. .

If Tv = 0, then A = 0 (because S(T'v) = Av) and furthermore T is
not invertible, which implies that TS is not invertible (by Exercise 22 in
Chapter 3), which implies that A (which equals 0) is an eigenvalue of T'S.

Regardless of whether or not T'v = 0, we have shown that A is an eigen-
value of T'S. Because A\ was an arbitrary eigenvalue of ST, we have shown
that every eigenvalue of ST is an eigenvalue of T'S.

Reversing the roles of S and T, we conclude that every eigenvalue of T'S
is also an eigenvalue of ST. Thus ST and T'S have the same eigenvalues.

Suppose T' € L(V) is such that every vector in V is an eigenvector of 7.
Prove that T is a scalar multiple of the identity operator.

SOLUTION: For each v € V, there exists a, € F such that
Tv = ayv.

Because T0 = 0, we can choose ag to be any number in F, but for v € V\ {0}
the value of a, is uniquely determined by the equation above.

To show that T is a scalar multiple of the identity, we must show that a,
is independent of v for v € V' \ {0}. To do this, suppose v,w € V \ {0}. We
want to show that a, = a,. First consider the case where (v, w) is linearly
dependent. Then there exists b € F such that w = bu. We have
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13.

14.

ayw=Tw

= T(bv)

=bTv

= b(a,v)

= ayw,

which shows that e, = ay,, as desired. ,
Finally, consider the case where (v, w) is linearly independent. We have
Cytw(v+w) =T (v + w)

=Tv+Tw
= ayv + apWw,

which implies that

(Gvtw — @u)V + (Byiw — aw)w = 0.
Because (v, w) is linearly independent, this implies that ay4y = a, and
Qy+w = Qy, SO again we have a, = a,,, as desired.
Suppose T' € L(V) is such that every subspace of V with dimension
dimV -1

is invariant under T'. Prove that T is a scalar multiple of the identity oper-
ator. )

SOLUTION: Suppose that T is not a scalar multiple of the identity op-
erator. By the previous exercise, there exists u € V such that u is not an
eigenvector of T. Thus (u, T'w) is linearly independent. Extend (u,Tu) to a
basis (u,Tu,vy,...,v,) of V. Let

U = span(u,vy,...,v,).

Then U is a subspace of V and dimU = dimV — 1. However, U is not
invariant under T because u € U but Tu ¢ U. This contradiction to our
hypothesis about T" shows that our assumption that T is not a scalar multiple
of the identity must have been false.

Suppose S,T € L£(V) and S is invertible. Prove that if p € P(F) is a
polynomial, then

p(STS™) = Sp(T)S~!.

SOLUTION: First suppose m is a positive integer. Then
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15.

16.

(STS~ )™ = (STS ) STS™)...(STS™!)
= ST(S718)T(5718)...(8"18)Ts!
=8T™S7!,
which is our desired equation in the special case when p(z) = z™. Multiply-
ing both sides of the equation above by a scalar and then summing a finite

number of equations of the resulting form shows that p(STS"l) = Sp(T)S!
for every polynomial p € P(F).

Suppose F = C, T € L(V), p € P(C), and a € C. Prove that a is an
eigenvalue of p(T') if and only if a = p(\) for some eigenvalue A of T..

SoLuTIiON: First suppose that a is an eigenvalue of p(T"). Thus p(T)—al
is not injective. Write the polynomial p(z) — a in factored form:

p(z) —a=clz— A1)...(z = Am),

where ¢, \1,...,Am € C. We can assume that ¢ # 0 (otherwise p is a
constant polynomial, in which case the desired result clearly holds). The
equation above implies that

p(T) —al =c(T — M\ I)...(T = A1)

Because p(T') — al is not injective, this implies that T"— A;I is not injective
for some j. In other words, some A; is an eigenvalue of T. The formula
above for p(z) — a shows that p(A;) —a = 0. Hence a = p(\;), as desired.

For the other direction, now suppose that a = p()\) for some eigenvalue
A of T. Thus there exists a nonzero vector v € V such that

Tv = dv.

Repeatedly applying T to both sides of this equation shows that T*v = A*y
for every positive integer k. Thus

p(T)v = p(A)v

= av.
Thus a is an eigenvalue of p(T).

Show that the result in the previous exercise does not hold if C is replaced
with R.
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17.

18.

19.

SoLuTION: Define T' € L(R?) by T(z,y) = (—y,z). Define p € P(R) by
p(z) = z2. Then p(T) = T2 = —1I, and hence —1 is an eigenvalue of p(T).
However, T has no eigenvalues (as we saw on page 78 of the textbook; the
point here is that eigenvalues are required to be real because we are working
on a real vector space), so there does not exist an eigenvalue \ of T such
that —1 = p(A).

Of course there are also many other examples.

Suppose V is a complex vector space and T' € L(V). Prove that T has an

invariant subspace of dimension j for each j =1,...,dimV.

SOLUTION: There is a basis (v1,..., vdinv) With respect to which T has
an upper-triangular matrix (see 5.13). For each j = 1,...,dim V, the span
of (v1,...,v;) is a j-dimensional subspace of V that is invariant under T
(by 5.12).

Give an example of an operator whose matrix with respect to some basis
contains only 0’s on the diagonal, but the operator is invertible.

SoLuTiON: Let T € C(Fz).be the operator whose matrix (with respect
to the standard basis) is
01
10"

Obviously this matrix has only 0’s on the diagonal, but T is invertible (be-
cause T'T' = I, as is clear from squaring the matrix above).
Of course there are also many other examples.

COoMMENT: This exercise and the next one show that 5.16 fails without
the hypothesis that an upper-triangular matrix is under consideration.

Give an example of an operator whose matrix with respect to some basis
contains only nonzero numbers on the diagonal, but the operator is not
invertible.

SoLuTiON: Define T € L(F?) to be the operator whose matrix (with
respect to the standard basis) is

11
1 1]°
Then T'(1,0) = T(0,1) = (1,1), so T is not injective, so T is not invert-

ible, even though the diagonal of the matrix above contains only nonzero
numbers.
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Of course there are also many other examples.

20. Suppose that T' € £(V) has dim V distinct eigenvalues and that S € L(V)
has the same eigenvectors as T' (not necessarily with the same eigenvalues).
Prove that ST =T'S.

SoLuTiON: Let n = dimV. There is a basis (vy,...,v,) of V con-
sisting of eigenvectors of T' (see 5.20 and 5.21). Letting )j,..., A\, be the
corresponding eigenvalues, we have

T‘UJ' = Ajvj
for each j. Each v; is also an eigenvector of S, so
S’v,- = Qyvy
for some a; € F.
For each j, we have
(ST)vj = S(ij) = /\jS‘Uj = Ctj/\jvj
and
(TS)'UJ' = T(S‘UJ‘) = aijj = ajAjvj.
Because the operators ST and T'S agree on a basis, they are equal.
21. Suppose P € L(V) and P? = P. Prove that V = null P & range P.

SoLuTiON: First suppose v € null P Nrange P. Then Pu = 0, and
there exists w € V such that u = Pw. Applying P to both sides of the
last equation, we have Pu = P?w = Pw. But Pu = 0, so this implies
that Pw = 0. Because u = Pw, this implies that v = 0. Because u was an
arbitrary vector in null PNrange P, this implies that null PNrange P = {0}.

Now suppose v € V. Then obviously

‘U:(U—-P‘U)+P'U.

Note that P(v — Pv) = Pv — P?2y =0, so (v — Pv) € null P. Clearly Pv €
range P. Thus the equation above shows that v € null P4-range P. Because
v was an arbitrary vector in V, this implies that V' = null P + range P.

We have shown that null P Nrange P = {0} and V = null P + range P.
Thus V = null P & range P (by 1.9).
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22.

23

Suppose V = U @ W, where U and W are nonzero subspaces of V. Find all
eigenvalues and eigenvectors of Py w.

SOLUTION: Because V = U ® W, each vector v € V can be written
uniquely in the form

v =14 w,

where u € U and w € W. Recall that if v is represented as above, then
Pywv =u.

Suppose A € F is an eigenvalue of Pyw. Then there exists a nonzero
vector v € V such that Pywv = Av. Writing this equation using the
representation of v given above, we have u = A(u + w). Thus

(1-XNu—Aw=0.

Because V = U@W, if 0 is written as the sum of a vector in U and a vector _
in W, then both vectors must be 0. Thus the equation above implies that
(1 — Mu = Aw = 0. Because u and w are not both 0 (because v # 0), this
implies that A =1 or A = 0.

For v € V with representation as above, the equation Pywv = 0 is
equivalent to the equation u = 0, which is equivalent to the equation v = w,
which is equivalent to the statement that v € W. This means that 0 is an
eigenvalue of Pyw (because W is a nonzero subspace of V) and that W
equals the set of eigenvectors corresponding to the eigenvalue 0.

For v € V with representation as above, the equation Pywv = v is
equivalent to the equation v = u, which is equivalent to the statement that
v € U. This means that 1 is an eigenvalue of Py (because U is a nonzero
subspace of V) and that U equals the set of eigenvectors corresponding to
the eigenvalue 1.

Give an example of an operator T € L(R?) such that T has no (real) eigen-
values.

SoLuTiON: Define T € L(R*) by
T(z1,z3, %3, T4) = (—T2, 71, — T4, T3).
Suppose A € R. For this particular operator, the eigenvalue-eigenvector

equation T'(z1,T2,23,74) = A(Z1, T2, T3,Z4) becomes the system of equa-
tions
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24.

—Ty = Aa:l
I = MQ
—T4 = Afr;;
I3 = /\.‘1:4.

Multiplying together the first two equations and also multiplying together
the last two equations gives —x1z9 = A%z 79 and —z374 = A2z3z4. If either
z1 or T3 does not equal 0, then the first two equations show that neither of
z1,T2 equals 0. Similarly, if either z3 or 4 does not equal 0, then the last
two equations show that neither of x3, x4 equals 0. Thus if X is an eigenvalue
of T', then there is a solution to the system of equations above with =,z # 0
or z3z4 # 0. Either way, we conclude that —1 = A2, which is impossible for
any real number A. Thus T has no real eigenvalues.

Suppose V is a real vector space and T' € £(V) has no eigenvalues. Prove
that every subspace of V invariant under T has even dimension.

SOLUTION: Suppose U is a subspace of V that is invariant under 7.
Thus T|y € L(U). If dimU were odd, then T|y would have an eigenvalue
A € R (by 5.26), so there would exist a nonzero vector u € U such that

Tlyu = .

Obviously this would imply that Tu = Au, which would imply that X is
an eigenvalue of T. But T has no eigenvalues, so dim U must be even, as
desired.
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Inner-Product Spaces

Prove that if z,y are nonzero vectors in R2, then

(z,9) = lizllllyll cosb,

where 0 is the angle between z and y (thinking of z and y as arrows with
initial point at the origin). Hint: draw the triangle formed by z, y, and z—y;
then use the law of cosines.

SOLUTION: Suppose that z,y are nonzero vectors in R? and @ is the
angle between = and y. Consider the triangle formed by z, y, and z — y:

The law of cosines states that
Iz — vl = llzI® + lwl|* — 2ljz|l{ly] cos6.

As usual, we compute the norm of a vector squared by taking the inner
product of the vector with itself:

lz -yl = (- v,z — )
= (.’1:, I) - (:II, y) - (ya ZB) + (ya y)
= |lzl* + llwll® - 2(z, v)-

49
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Substitute the last expression for ||z — y||? into the left side of the law of
cosines, obtaining

Il + Nyl - 2(z, v) = l=|* + llyl* - 2llzl[lyll cosé.

Now subtract [|z]|2 + [|ly]|? from both sides of the equation above, and then
divide both sides by —2, obtaining

(z,y) = =yl cosé.
Suppose u,v € V. Prove that (u,v) = 0 if and only if
llu|l < |u+ avl|
for alla € F.

SOLUTION: First suppose that (u,v) = 0. Let a € F. Then u,av are
orthogonal. The Pythagorean theorem thus implies that

llu+ av]® = [[ull® + [lav]®

> Jlufl?

Taking square roots gives |lu|| < ||z + av|, as desired.
To prove the implication in the other direction, now suppose that ||u|| <
[[u + av|| for all e € F. Squaring this inequality, we get

llul® < [lu + av]f?
= (v + av,u + av)
= (u,u) + (u,av) + {av, u) + (av, av)
= [lull? + &, v) + au, ) + |af*||v]]?
= llul® + 2Rea(y, v) + [af*||v]®

for all a € F. Thus
—2Rea(u,v) < |af*|v]?

for all a € F. In particular, we can let a equal —t{u, v) for £ > 0. Substitut-
ing this value for a into the inequality above gives

2¢|(u, v)[* < £((u, v)[*v]®

for all £ > 0. Divide both sides of the inequality above by t, getting
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2/(u, v)[® < tl(u, v) 210

for all t > 0. If v = 0, then (u,v) = 0, as desired. If v # 0, set ¢ equal to
1/]lv||? in the inequality above, getting

20w, v)[* < [(u, v)
which implies that (u,v) = 0, as desired.

3. Prove that

(L)' = (S (5%)

j=1
for all real numbers a;,...,a, and by,...,b,.
SOLUTION: Suppose ay,...,an,b1,...,b; € R. Using the usual inner

product on R"™, we have
(Tats)” = (S Wia)s/v/h)”
j=1 j=1

= ((a]_, \/50.2, ceey \/ﬁan)a (b17b2/\/§s e 1bn/\/7—7'))2
< ”(al’ \/50-2, LERE} \/—mﬂ)llzn(blr b2/\/§1 ce- 9bﬂ/\/f_7’)"2

= (gjaf) (gl b/5),

where the inequality above comes from the Cauchy-Schwarz inequality.
4. Suppose u,v € V are such that
full =3, llu+v)=4, [u-9]=6.
What number must ||v|| equa.l?.
SoLuTION: From the parallelogram equality, we have
lle + v)? + [lu — v]f* — 2||u|/?

2
16 + 36 — 18

2

llol? =

= 17.
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Thus |jv]| = V17.

Prove or disprove: there is an inner product on R2 such that the associated
norm is given by

(1, z2)|| = |21] + |22
for all (z1,z,) € R2.

SoLuTION: We will show that there does not exist an inner product on
R2? such that the associated norm is given by the formula above by showing
that the parallelogram equality is violated. Let

v=(3,2) and wv=(1,3).
Then
u+v=(4,5) and uv-v=(2-1).
Using the formula above, we then have

lu+v)|? 4+ flu—v]|2=81+9
=90

2(lull® + [l0[%) = 2(25 + 16)
= 82.

"Thus the parallelogram equality fails, as desired.

Prove that if V is a real inner-product space, then

llu+ ol? — |lu — |
4

(v, v) =
forall u,v e V.

SoLuTION: Suppose V is a real inner-product space and u,v € V. Then

lu + o] = |ju — v|? _ (u+v,u+v) — (u—v,u—2v)
4 4
_ lull® + 2¢u, v) + [lvl*> = ([lell® — 2(u, v) + ||v]?)
4

_ 4(u, v)
4
= (u" v)’
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as desired.
Prove that if V' is a complex inner-product space, then

(v = Lt ll® — e — vl +i|u + )% — [lu — dv|%

forall u,v e V.

SoLUTION: Suppose V is a complex inner-product space and u,v € V.
Then

lu 4 v||? = (v + v,u + v)
= [lull® + (u, v} + (v, u) + ||v]|?

and
—|lw—v|? = —(u —v,u — v)
= —[|ul® + (u,v) + (v, u) — ||v|?
and
illu +iv]® = iu + v, u + i)
= illull? + (u,v) = (v, u) +iflo|?
and

—il|lu — |2 = —i{u — fv,u — iv)

= —iflull® + (v, v) — (v,u) — iflv|>.
Adding the four equations, we have
llu + % = llu = olf* + illu+ il - illu — iv]|* = 4(u, v),
as desired.

A norm on a vector space U is a function || ||: U — [0, c0) such that |[u| =0
if and only if u = 0, [lau|| = |e]||lu|| for all @ € F and all v € U, and
le + o[l < |luf| + ||v]| for all u,v € U. Prove that a norm satisfying the
parallelogram equality comes from an inner product (in other words, show
that if || || is a norm on U satisfying the parallelogram equality, then there
is an inner product (, ) on U such that |lu| = (u,4)!/? for all u € U).
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COMMENT: This is among the hardest exercises in the book. Instructors
may want to simplify this exercise slightly by allowing students to consider
only the case where F = R.

SOLUTION: Suppose that U is a vector space and || || is 2 norm on U
satisfying the parallelogram equality. We want to find an inner product (, )
on U such that ||Ju| = (u,u)'/? for all v € U.

First consider the case where F = R. For u,v € U, define (u,v) by

_ le ol — flu = of?

(1,0) = ,

This definition is motivated by Exercise 6 of this chapter, which gives a
formula for the inner product in terms of norms.
For u € U we have

_ et ul® —flu—ul?

() = .
_ ll2uf? - Jol?
4
= lul.
Thus [lul| = (u,u)/?, as desired. However, we still must show that ( , )

satisfies the properties required of an inner product.

Because (1, u) = [|ul|? (as shown above), we have (u,u) > 0 for allu € U,
with equality if and only if u = 0; these properties follow from the properties
of a norm. Thus {, ) satisfies the positivity and definiteness properties
required of an inner product.

To prove that (, ) is additive in the first slot, let u,v,w € U. Then

4((’“ +v, w) - (u7 w) - (v::w))

= |lu+v+wl® - |lu+v—w|? - |zt w|?
+ |lu — wlf? = [lv + w|f* + [lv — w]||?

= [lu+v+w|?® + (v — w|® + |lv — w]|?)
— e+ v —w|® - (lu+ vl + [[v +w|?),

where the first equality comes from the definition of ( , ). In the last
equality above, the parentheses indicate groupings to which we will apply
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the parallelogram equality, which asserts that the sum of the norms squared
of two vectors z,y € U can be computed from the formula

lz+yl?® | llz -yl
=l + llyl* = + -
2 2
Applying the parallelogram equality to the two terms in parentheses above
(take £ = u — w,y = v — w for the first sum in parentheses, then =z =

u+w,y = v+ w for the second term in parentheses) gives
4((u + v, w) — (v, w) — (v, w))

llu+ v — 2uw|? + llu —v|?
2 2
llw+v+2w|? |lu-—2v|?
2 T2

lw+ v — 2w]|?

2
lu+ v + 2w]||?
—

=lu+v+uw|®+

- ||'u,+v—w]|2—

= (|lu+ v + w|® + [lw[?) +
= (llu+v—w[?+ |wl?) -

Applying the parallelogram equality to the two terms in parentheses above
(teke £ = u + v + w,y = w for the first sum in parentheses, then z =
u+v —w,y = w for the second term in parentheses) gives

4((“’ + v, w) - (u'a w) - (U’ w))

_lutor2ul | futol® | et - 2u)?

2 2 2
ol ety —2ul® et o+ 2uw]?
2 2 2

=0. .
Thus
(u+v,w) = (v, w) + (v, w),

completing the proof that ( , ) is additive in the first slot.
To prove that ( , ) is homogeneous in the first slot, let u,v € U. If n is
a positive integer, then
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(nu,v) = (u+--- +u,v)

n times

=$u,v)+---+(u,'v)l

s

n times
= n(u,v),
where the second equality comes from additivity in the first slot, which we

have already verified. Replacing v with u/n in the equality above gives
(u,v) = n{u/n,v), which implies that

o) = ~(wv)

Let m be another positive integer, and replace u with mu in the equality
above, getting

(Za ) = (s, 0)
= %(u, v),

where the second equality holds because we have already shown that ( , )
is homogeneous in the first slot with respect to positive integers. We have
now shown that (, ) is homogencous in the first slot with respect to positive
rational numbers.

From the definition of (, ), we have

_ =t ol — fl-u —of?
(—u, ‘U) - 4

ol — =
"4

= —(u,v).

Combining this with the result from the previous paragraph, we can now
conclude that (, ) is homogeneous in the first slot with respect to all rational
numbers.

Now suppose that A € R. There exists a sequence ry,rs,... of rational
numbers such that lim,_,o, 7, = A. Thus
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AMu,v) = lim rn(u,v)

n—oo

= nlLugo (rou,v)

Irns + % — [lrau — v]|?
m .

- nlivoo 4
In the next paragraph we will show that limp_ |[rau + v|| = ||Au + v|| and
lim, o [Irne — v|| = ||Au— v||. Combining this with the last equation above

we can conclude that

2 _ a2
P L

= (M, v),

which will complete the proof that (, ) is homogeneous in the first slot.
If z,y € U, then

=]l = lly + (z — )l
<yl + llz -yl

and thus

lzll = liyll < Iz — yll.
Interchanging the roles of z and y, we get

lyll = llzll < llz — -

Because |||z]| — [lyll| equals [[z]| — [lgl| or |ly|l - ||z]l, we can now conclude
that

Hizll = Hyll] < ll= - wll.
With z = r,u + v and y = Au + v, this inequality gives

[Irau + vl = A+ ofl| < flrnu — X
= [ra = Alllull.

Because lim,,_,o0 T = A, this shows that
lim |rpu + v|| = |[Au +v||.
n—+o0

Replacing v with —v, we have
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im |lrpu — o] = || Au—v||.
n—+oo

The last two equations are the promised ingredients that were needed for
the proof that (, ) is homogeneous in the first slot.

Finally, we must show that (u,v) = (v,u) (recall that we are considering
the case where F = R)). This last step is easy:

e + 912 — [l = o]
4

_ o uf2 = o — uf?

4

(u,v) =

= (v, u).
This completes the proof that (, ) is an inner product when F = R. Whew!
Now consider the case where F = C. For u,v € U, define (u,v) by

@ﬂoz"u+wP—nu—mw+ju+am%_nu—ﬁm%.

This definition is motivated by Exercise 7 of this chapter, which gives a
formula for the inner product in terms of norms.
For v € U we have

[l + ul® — flu — wlf® + [|u + du®i — |lu — ||

(u’ u) = 4
_ N2 + 11 + il — |1 — 3?]|u]|?s
B 4
_ Allull? + 2(ulf?é — 2(u]*
B 4
= [lul®.
Thus |jul| = (u,u)!/2, as desired. However, we still must show that { , )

satisfies the properties required of an inner product.

Because (u,u) = ||u|[? (as shown above), we have {u,u) > 0 for all u € U,
with equality if and only if u = 0; these properties follow from the properties
of a norm. Thus (, ) satisfies the positivity and definiteness properties
required of an inner product.

For convenience, let’s define ( , )g by

_ et o2 — e — ]2
" .

(‘LL, v)R
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Here the subscript R reminds us that (, g was the inner product we defined
when considering the case F = R. Now we are assuming that F = C, but
(, )r is still well defined. Note that

(u,v) = (y, V)R + (u,iv)Ri.

We have already proved that (, )gr is additive in the first slot, and now
we use that information. Let v, v,w € U. Then

(v +v,w) = (u+v,wr + (u+ v, iw)Ri
= (u,w)r + (v, w)R + (u,iwW)Ri + (v, iW)Ri
= ({v, w)r + (v, iw)ri) + ((v, w)r + (v, iwW)Rr1)
= (u,w) + (v, w).

Thus (, ) is additive in the first slot.
To prove that (, ) is homogeneous in the first slot, let u,v € U. If A € R,
then

(M, v) = (Au, v)r + D, iv)Ri
= My, V)R + Ay, iv)Ri
= XMu, v),
where we have used the homogeneity of ( , )r in the first slot. The last

equation above shows that (, ) is homogeneous in the first slot with respect
to all real numbers. We must still extend this result to complex numbers.

Note that
(i, ) = lliw + v||2 — |[su — || + ||iu + dv||%i — |jiu — iv||%
4
_ liu + v)I1%i — Jliu — ) [|% — [l + )1 + li(u — iv)|]?
4
_ o+ ol — e — off% - [lu + iv]|® + [lu — dv]|?
4
= i{u, v).

Combining this result with additivity and homogeneity with respect to real
numbers, we get that

{(a + bi)u,v) = (a + bi)(u, v)
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for all a,b € R. In other words, ( , } is homogeneous in the first slot with
respect to all complex numbers.
Finally, we must show that (u,v) = (v,u). This last step is easy:

llw+ vl — flu — vlf? + [lu+ iv]|* — [lu — dv]%

(u,0) = y
_ Mo+ ull® — v — u? + [li(=du +v)|1% — (=) (Gu + v)][%
4
_ v+l = flo —ull® + lv + % — [lv — dul|2
4
= (v, u).
This completes the proof that (, ) is an inner product when F = C.
9. Suppose n is a positive integer. Prove that
( 1 sinz sin2z sinnr cosz cos2x cosn:c)
\/2_7f,‘\/7_r’ ‘/—7?1'-'1 ﬁ ,\/7_1" \/7—'_:---: \/1_1’

is an orthonormal list of vectors in C[—m, 7], the vector space of continuous
real-valued functions on [—,«] with inner product

(£9)= [ 1@l

COMMENT: This orthonormal list is often used for modeling periodic
phenomena such as tides.

SoLUTION: First we need to show that each element of the list above
has norm 1. This follows easily from the following formulas:

25t — sin 25t
/(siujt)zdt=148jw#

23t + sin 2]t
t)
/(cosg G

Next we need to show that any two distinct elements of the list above
are orthogonal. This follows easily from the following formulas, valid when

i#k
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10.

11.

/ (sinj£)(sin kt) dt =
jsin(j — k)t + ksin(j — k)t — jsin(j + k)t + ksin(j + k)t
20/ — k)G + k)
/ (sin jt)(cos kt) dt =

jcos(j — k)t + kcos(j — k)t + j cos(j + k)t — kcos(j + k)t
2(k —5)(J + k)

/ (cos jt)(cos kt) dt =

jsin(j — k)t + ksin(j — k)t 4 jsin(j + k)t — ksin(j + k)t
27 - k) + k)

/(sinjt)(cosjt) dt = ——(COSTJJt)i

On P2(R), consider the inner product given by

1
(Pq) = fo p(z)q() da.

Apply the Gram-Schmidt procedure to the basis (1,z,z2) to produce an
orthonormal basis of Po(R.).

SOLUTION: Applying the Gram-Schmidt procedure to (1, z, z?) produces
(using elementary calculus and some arithmetic) the following orthonormal
basis of P2(R):

(L, V3(-1 +2z),V5(1 — 6z + 622)).

What happens if the Gram-Schmidt procedure is applied to a list 6f vectors
that is not linearly independent?

SOLUTION: Suppose (vy,.-.,Vr) is a linearly dependent list of vectors
in V.

If v; = 0, then at the first step of applying the Gram-Schmidt procedure
to (v1,...,vm) we will be dividing by 0 when trying to set e; = v /||vyl.

If v1 # 0, then by the linear dependence lemma (2.4), some v; is in
span(vy,...,v;j—1); here we choose j to be the smallest positive integer
with this property. If we apply the Gram-Schmidt procedure to produce
(e1,...,ej-1) at the end of step 7, then

span(vi,...,vj_1) = span(ey,...,ej_1).
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Thus v; € span(ey,...,ej_1). By 6.17, this implies that
v; = (vj,e1)er +-+- + (vj,e5-1)ej_1.
Thus the Gram-Schmidt formula 6.23 for e; includes a division by 0, which
is not allowed.
12. Suppose V is a real inner-product space and (vy,...,vy) is a linearly inde-

pendent list of vectors in V. Prove that there exist exactly 2™ orthonormal
lists (e1,.-.,em) of vectors in V such that

span(vi,...,v;) = span(ey, ..., ;)
forall j € {1,...,m}.
SOLUTION: For j = 1, the condition above states that
span(v;) = span(e;).

Because there are only two vectors in span(v;) with norm 1 (these two
vectors are v /||v1f| and —v,/||v;|]), we have only these two choices for e;.

Now suppose that j > 1 and that an orthonormal list (ey,...,e;j_1) has
been chosen such that

span(vy,...,v;—1) = span(ey, ..., ej-1).

The Gram-Schmidt procedure produces e; € V such that (e, ... ,€5) is an
orthonormal list and

span(vy,...,v;) = span(ey, ..., ;).

Suppose e; € V is another vector with these properties, meaning that
(e1,...,€j-1,€;’) is an orthonormal list and

span(vy,...,v;) =span(ey,...,ej_1,¢€;).

The last two equations show that span(e,...,e;j_1,€;') = span(ey,...,€;).
In particular, e;’ € span(ey, ..., €;), which implies that
ej' = (ej', 61)61 +---4+ (ej', e_,-)e_,-
= (ej', €5)ej,

where the first equality comes from 6.17 (with span(ey, ..., e;) replacing V
and j replacing n) and the second equality holds because (ey, ..., ej_1,€;’)




63

CHAPTER 6. Inner-Product Spaces

13.

14.

is an orthonormal list. Taking norms of both sides of the last equation, and
recalling that e; and e;' both have norm 1, we see that [{e;/,ej}| = 1. Thus
(e ej) = 1 or (e;’,ej) = —1. Hence the last equation above implies that
ej' = ej or ej' = —e;.

We have shown that there are exactly two possible choices for each €.
As j ranges from 1 to m, this gives us exactly 2™ possible choices for
(6 Lysooy em)

Suppose (e1,-..,em) is an orthonormal list of vectors in V. Let v € V.
Prove that

lol® = v, en)* + -+ + [{v, em) I

if and only if v € span(e;,...,en)-
SoLUTION:  Extend (e,...,em) to an orthonormal basis (ej,...,en)
of V. Then

v=(v,e)e1 +- -+ (v,en)e,
and
012 = |(v, e} + - - - + [{v, en) %

see 6.17. From the last equation, we see that

loll? = (v, en)  + - - + |(v, em)?

if and only if (v,em41) = --- = (v,e,) = 0. From the first equation above,
this happens if and only if

v= (v, 61)61 +---+ ('U, em)em:
which happens if and only if v € span(el,.. cer€m)-

Find an orthonormal basis of P2(R) (with inner product as in Exercise 10)
such that the differentiation operator (the operator that takes p to ')
on P3(R) has an upper-triangular matrix with respect to this basis.

SOLUTION: Because 1’ = 0, ' = 1, and (2?)' = 2z, the differentiation
operator on P(R) has an upper-triangular matrix with respect to the basis
(1,z,7%). However, (1,z,z2) is not an orthonormal basis. But, as can be
seen from the proof of 6.27, if the Gram-Schmidt procedure is applied to this
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15.

16.

17.

basis, we will get an orthonormal basis with respect to which the differenti-
ation operator has an upper-triangular matrix. As we saw in Exercise 10 of
this chapter, the Gram-Schmidt procedure applied to (1, z,z?) gives

(1, V3(—1+2z),V5(1 — 6z + 622)).
which is our desired orthonormal basis of P2(R).
Suppose U is a subspace of V. Prove that |

dimU* = dimV — dimU.
SoruTioN: From 6.29, we know that
V=UeU"'
Thus by Exercise 17 in Chapter 2, we have
dimV =dimU +dim U™,
which implies that dimU~' = dimV — dim U.
Suppose U is a subspace of V. Prove that U+ = {0} if and only if U = V.
SoLuTiON: From 6.29, we know that
V=UeUL
This clearly implies that UL = {0} if and only if U = V..

Prove that if P € £(V) is such that P2 = P and every vector in null P is
orthogonal to every vector in range P, then P is an orthogonal projection.

SoLuTION: Suppose P € L(V) is such that P2 = P and every vector
in null P is orthogonal to every vector in range P. Let U = range P. We
will show that P equals the orthogonal projection Py. To do this, suppose
v € V. Then

v = Pv+ (v— Pv).

Clearly Pv € range P = U. Also, P(v — Pv) = Pv — P2y = 0, which means
that v — Pv € null P. Thus v — Pv is orthogonal to every vector in U. In
other words, v — Pv € U+. Thus the equation above writes v as the sum of
a vector in U and a vector in UL. In this decomposition, the vector in U
equals, by definition, Pyv. Hence Pv = Pyv, as desired.
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18.

19.

Prove that if P € £(V) is such that P2 = P and
[Pyl < [lvll
for every v € V, then P is an orthogonal projection.

SOLUTION: Suppose u € range P and w € null P. If we can show that
(u,w) = 0, then by the previous exercise we can conclude that P is an
orthogonal projection.

Because u € range P, there exists ' € V such that

u = Pu.
Applying P to both sides of this equation, we have
Pu= P4/
= PJ

=u.
Because w € null P, this implies that

Plu+aw)=u
for every a € F. Thus

lull?® = [|P(u + aw)||?
<|lu+ a,wll2

for every a € F, where the second line follows from our hypothesis that
|Pv|| < ||v]| for every v € V. The inequality above implies (see Exercise 2
of this chapter) that (u,w) = 0, as desired.

Suppose T' € L£(V') and U is a subspace’ of V. Prove that U is invariant
under T if and only if PyTPy = TFy.

SoLUTION: First suppose that U is invariant under T. Let v € V.
Then Pyv € U and hence T(Pyv) € U (because U is invariant under T).
Thus Py (T(Pyv)) = T(Pyv). Because v was an arbitrary vector in V, this
implies that PyT Py = T Py, as desired.

To prove the implication in the other direction, now suppose that

PyTPy=TPy.
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20.

Suppose u € U. Then Pyu = u, so applying both sides of the equation
above to u gives Py(Tu) = Tu, which implies that Tw € U. Because u was
an arbitrary vector in U, this implies that T is invariant under U, as desired.

Suppose T' € L(V) and U is a subspace of V. Prove that U and UL are
both invariant under T if and only if PyT = TPy.

SoLUTION: First suppose that U and U+ are both invariant under 7.
By the previous exercise, this implies that

PyTPy=TPy
and
Py TPy, =TPy..
But Py = I — Py, so the last equation becomes
(I - Py)T(I - Py) =T(I - Py).
Expanding both sides of the equation above and rearranging terms, we get
PyTPy = PyT.

Combining this with the first equation above, we get PyT = T Py, as desired.
To prove the implication in the other direction, suppose now that

PyT =TPy.
Then
PyTPy = (PyT)Py
= (TPy)Py
= TPy?
=TPFy,

which implies (by the previous exercise) that U is invariant under T', as
desired. Also,
PysTPy: = ((I — Py)T) Py

= (T — PyT)Py.

=(T - TPRy)Py.

=T( — Py)Py.

= Tpu.l.2

=TPy.,
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21.

22.

which implies (by the previous exercise) that U+ is invariant under T, as
desired.

In R?, let
U = span((1,1,0,0),(1,1,1,2)).
Find u € U such that |lu — (1,2,3,4)| is as small as possible.

SoLuTion: First we find an orthonormal basis of U by applying the
Gram-Schmidt procedure to ((1, 1,0,0),(1,1,1, 2)), getting

er = (%,\%,o,o)
(0,0, 71_5 %)

Thus with e;,ey as above, (e1,e2) is an orthonormal basis of U. By 6.36
and 6.35, the closest point v € U to (1,2,3,4) is

€g =

((13 2: 31 4)1 el)el + <(11 2) 3’ 4): 62)62)
which equals

(2312
2’2’55/
Find p € P3(R) such that p(0) = 0, p’(0) = 0, and

1
/ 12 4+ 3z — p(z)|? dz
0

is as small as possible.

SOLUTION: Define an inner product on P3(R.) by

1
(r.9)= [ f@)g(a)ds.
Let g(z) = 2 + 3z, and let
U = {p € P3(R) : p(0) = 0,p'(0) = 0}.

With this notation, our problem is to find the closest point pe U togq. To
do this, first we find an orthonormal basis of U.
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23.

A polynomial p satisfying p(0) = 0, p/(0) = 0 has constant term 0 and
first degree term also equal to 0. Thus a basis of U is
(=2, 2%).
Apply the Gram-Schmidt procedure to this basis, getting
er = V512
ea = V7(-5z% + 623).

Thus with ej, ez as above, (e),ez) is an orthonormal basis of U. By 6.36
and 6.35, the closest point p € U to ¢ is given by the formula

p = (g,e1)er + (g, e2)e2.
A short computation now shows that

p(z) = 24z% — 0

Find p € P5(R) that makes
/ |sinz — p(z)|® dz
-

as small as possible. (The polynomial 6.40 is an excellent approximation
to the answer to this exercise, but here you are asked to find the exact
solution, which involves powers of 7. A computer that can perform symbolic
integration will be useful.)

SOLUTION: Let C[—, ] denote the real vector space of continuous real-
valued functions on [—=, #] with inner product

()= [ i@tz de.

Let v € C[—m, 7] be the function defined by v(z) = sinz. Let U denote the
subspace of C[—, ] consisting of the polynomials with real coefficients and
degree at most 5. We need to find p € U such that [jv — p|| is as small as
possible.

First find an orthonormal basis of U by applying the Gram-Schmidt
procedure (using the inner product above) to the basis (1, z, 22, 23, 24, z°)
of U, producing the orthonormal basis (e, es, €3, 4, €5, €g), Where
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1
e1 = —,
! Vaer
€2 = 3/2
V32— 322)
=TT omr
\/g (3n%x — 5z3)
€4 == o 1/2 ’
o — 3(3n* — 30m2z? + 35z¢)
\/%(157#1: — 707223 + 6325)
€ =" 8rll/2 .

Now compute Pyv using 6.35 (with m = 6), getting

105(1485 — 15372 +«!)  315(1155 — 12572 + nrt) ,
xr — T
8x6 478
+ 693(945 — 10572 4 w4)25‘
8710

Finally, 6.36 and the discussion following 6.42 show that the function above
is the one we seek.

Pyv =

24. Find a polynomial ¢ € P3(R) such that

1
o(3) = [ peda(e)ds
for every p € Po(R). .

SOLUTION: We will need an orthonormal basis of P2(R), where the inner
product of two polynomials in P2(R) is defined to be the integral from 0 to
1 of the product of the two polynomials. An orthonormal basis of Py(R)
was already computed in Exercise 10 of this chapter. Specifically, let

61(13) =1
es(z) = V3(—1 + 2z)
e3(z) = V5(1 — 6z + 622).
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25.

26.

Then (ey, e2, €3) is an orthonormal basis of Py(R).
Define a linear functional ¢ on P2(R) by

o(p) = pl3)

We seek ¢ € P2(R) such that ¢(p) = (p,gq) for every p € Po(R). By the
formula given in the proof of 6.45, we have

g = p(ei)er + p(ez)ez + p(es)es.

Evaluate the right side of the equation above to get
3 2
q(z) = —5+ 15z — 15z°.

Find a polynomial ¢ € P(R) such that

1 1
f p(z)(cosnz) d = / p(z)q(z) dz
0 1]

for every p € Po(R).

SOLUTION: Define a linear functional ¢ on P2(R) by

1
o(p) = /0 2(=)(cos ) da.

We seek ¢ € P2(R) such that ¢(p) = (p,gq) for every p € P2(R), where
the inner product on Py(R) is defined as in the previous exercise. Letting
e1,€ez,e3 be as in the previous exercise, but using our new definition of ¢,
we again have

7= p(e1)er + p(e)ez + p(es)es.
Evaluate the right side of the equation above to get

12 — 24z
q(a:) = T.

Fix a vector v € V and define T € L(V,F) by Tu = (u,v). For a € F, find
a formula for T*a.

SoLUTION: Because T € L(V,F), we know that T* € L(F,V). Fix
a € F. Then T*a is the unique vector in V such that
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27.

28.

(2) (Tu,a) = (u,T*a)

for all u € U. The inner product on the right is the inner product in V, but
the inner product on the left is the usual inner product on F: the product
of the entry in the first slot with the complex conjugate of the entry in the
second slot. Thus

(Tu,a) = (Tu)a"
= (u,v)a
(b) = (u,av).

Comparing (a) with (b) gives
(v, T*a) = (u,av)
for all u € U. Thus T*a = av.
Suppose n is a positive integer. Define T' € L(F") by
T(215-.-,2n) = (0,21,...,20-1)-
Find a formula for T*(zy,..., z,).

SoLuTION: Fix (21,...,2q) € F* Then for every (wy,...,w,) € F*, we
have

((w1,-.,wa), T*(21,. - -y 20)) = (T(w1, -, wn), (21, ..., 2n))
= ((O, Wiy... ,wn_l), (21, - ,Zn))
=w1Zg+ -+ wp_1Z,

= ((wi,...,wn), (22,...,2n,0)).
Thus
T*(21,...,2n) = (22,...,25,0).

Suppose T € £(V') and A € F. Prove that A is an eigenvalue of T if and
only if A is an eigenvalue of T*.

SOoLUTION: We have
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A is an not eigenvalue of T' <= T' — AI is invertible
=S ST -A)=(T-M)S=1
for some S € L(V)
=S T-A)S*=8S"T-\)*=1
for some S € L(V)
<= (T — MI)* is invertible
&= T* — M is invertible
<= X is not an eigenvalue of T™.
Thus A is an eigenvalue of T if and only if X is an eigenvalue of T**.
29. Suppose T' € L(V) and U is a subspace of V. Prove that U is invariant
under T if and only if U is invariant under T*.
SoLuTION: First suppose that U is invariant under T. To prove that
U* is invariant under T*, let v € UL. We need to show that T*v € U~+.
But
(v, T*v) = (Tu,v)
=0
for every u € U (because if u € U, then Tu € U and hence T'u is orthogonal
to v, an element of UL). Thus T*v € U+, and hence U+ is 1nvarxant under
T*, as desired.
To prove the other direction, now suppose that U+ is invariant under T*.
Then by the first direction, we know that (U+)' is invariant under (T*)*.
But (UY)! = U (by 6.33) and (T*)* = T, so U is invariant under T,
completing the proof.
30. Suppose T € L(V,W). Prove that

(a) T is injective if and only if T* is surjective;
(b) T is surjective if and only if T* is injective.
SoruTiON: First we prove (a):
T is injective <= nullT = {0}
<= (rangeT*)* = {0}
< rangeT* =W
<= T" is surjective ,
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31.

32.

where the second line comes from 6.46(c).
Now that (a) has been proved, (b) follows immediately by replacing T
with T* in (a).

Prove that
dimnullT* = dimnullT + dim W — dimV
and |
dimrange T* = dimrangeT
for every T' € L(V,W).
SoruTtion: Let T € L(V,W). Then
dimnull T* = dim(range T')*

=dim W — dimrangeT
=dimnullT + dimW — dimV,

where the first equality comes from 6.46(a), the second equality comes from
Exercise 15 of this chapter, and the third equality comes from 3.4. This
proves the first equality that we seek.

To prove the second equality, note that

dimrangeT* = dim W — dim null T
=dmV —dimnullT
= dimrange T,

where the first and third equalities come from 3.4 and the second equality
comes from the first part of this exercise. This proves the second equality
that we seek.

Suppose A is an m-by-n matrix of real numbers. Prove that the dimension
of the span of the columns of A (in R™) equals the dimension of the span
of the rows of A (in R").

SoLuTioN: Let T € L(R",R™) be such that the matrix of T' (with
respect to the standard bases) equals A. Then rangeT equals the span of
the columns of A. Thus
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dimension of the span of the columns of A
=dimrangeT
= dimrange T"
= dimension of the span of the columns of M(T™)
= dimension of the span of the columns of the transpose of A
= dimension of the span of the rows of A,

where the second equality comes from the previous exercise and the fourth
equality comes from 6.47.
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Operators on |
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Make P;(R) into an inner-product space by defining

1
(Prg) = /0 p(z)q(z) dz.

Define T € L(P,(R)) by T(ao + a1 + azz?) = a;z.
(a) Show that T is not self-adjoint.

(b) The matrix of T with respect to the basis (1, z,z2?) is

0 00
01 04.
0 00
This matrix equals its conjugate transpose, even though T is not self-

adjoint. Explain why this is not a contradiction.

SoLuTiOoN: (a): Note that

(T'1,z) = (0,2)
=0
but
(1,Tz) = (1,x)
_ 1
=3

15
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Thus (T'1,z) # (1, Tz), which shows that T is not self-adjoint.

(b): The result stating that the matrix of T* is the conjugate transpose
of the matrix of T has as a hypothesis that we are working with orthonormal
bases (see 6.47). Because (1, z,z?) is not an orthonormal basis of Po(R), we
cannot compute the matrix of T* with respect to this basis by taking the
conjugate transpose of the matrix of T'.

Prove or give a counterexample: the product of any two self-adjoint opera-
tors on a finite-dimensional inner-product space is self-adjoint.

SoLuTion: Let S,T € L(F?) be the operators whose matrices (with
respect to the standard basis) are given by

10

M(S)z[o 2

] and M(T)=[? é]

Each of these matrices obviously equals its conjugate transpose, and hence
S, T are self-adjoint. Now

01
M(ST) = M(S)M(T) = [ 2 0 ] .
Because M(ST) does not equal its conjugate transpose, ST is not self-
adjoint. Thus we have an example of two self-adjoint operators whose prod-
uct is not self-adjoint.
Of course there are also many other examples.

COMMENT: Suppose S,T € L(V) are self-adjoint. Then ST is self-
adjoint if and only if ST = T'S (as is easy to see).
(a) Show that if V is a real inner-product space, then the set of sé]f—adjoint

operators on V is a subspace of L(V).

(b) Show that if V is a complex inner—;;roduct space, then the set of self-
adjoint operators on V is not a subspace of L(V).

SOLUTION: (a): Suppose V is a real inner-product space. Obviously the
zero operator is self-adjoint. Furthermore, if S,T € L(V) are self-adjoint,
then

(S+T)=85+T*
=5+T,
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and thus S+ T is self-adjoint. Finally, if T € £(V) is self-adjoint and a € R,
then

(aT)* = aT™
= aT,

and thus aT is self-adjoint. We have shown that the set of self-adjoint
operators on V contains the zero operator and that it is closed under addition
and scalar multiplication. Thus the set of self-adjoint operators on V is a
subspace of L(V).

(b): Suppose now that V is a complex vector space. The identity operator
I is self-adjoint, but (iI)* = —il so i is not self-adjoint. Thus the set of
self-adjoint operators on V is not closed under scalar multiplication and
hence it is not a subspace of L(V).

4. Suppose P € L£(V) is such that P2 = P. Prove that P is an orthogonal
projection if and only if P is self-adjoint.

SoLuTiOoN: First suppose that P is an orthogonal projection. Thus there
is a subspace U of V such that P = Py. Suppose v1,v2 € V. Write

v =u +wy, vz =uz+ wsy,
where uj, ug € U and wy,wy € UL (see 6.29). Now

(Pvy,v2) = (ug, ug + ws)
= (uy, ug) + (u1, wa)
= (ulsu2)
= (w1, u2) + (w1, uz)
= (u1 + w1,u2)
= (v, Pug).

Thus P = P*, and hence P is self-adjoint.
To prove the implication in the other direction, now suppose that P is
self-adjoint. Let v € V. Because P(v — Pv) = Pv — P2y = 0, we have

v — Pv € null P = (range P*)' = (range P)*,
where the first equality comes from 6.46(c). Writing

v = Pv+ (v — Pv),
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we have Pv € range P and (v — Pv) € (range P)!. Thus Pv = Prypg pu.
Because this holds for all v € V, we have P = P ange P, which shows that P
is an orthogonal projection.
5. Show that if dimV > 2, then the set of normal operators on V is not a
subspace of L(V).
SoLUTION: Suppose dimV > 2. Let (e1,...,e,) be an orthonormal
basis of V. Define S,T € L(V) by
S(ajer + --- + anen) = aze; —ajen
and
T(a161 +eee+ anen) = age; + a)es.
A simple calculation verifies that
S*(ai1e; + -+ + anen) = —asze; +ajes.
From this formula, another simple calculation shows that SS* = S*S. Yet
another simple calculation shows that T is self-adjoint. Thus both S and T
are normal. However, S + T is given by the formula
(S +T)(are; + -+ - + anen) = 2aze;.
A simple calculation verifies that
(S + T)*(alel + e 4 a,"en) = 2a;es.
A final simple calculation shows that (S + T)(S + T)* # (S + T)*(S + T).
In other words, S + T is not normal. Thus the set of normal operators on
V is not closed under addition and hence is not a subspace of L(V).
6.  Prove that if T € £L(V) is normal, then

rangeT = range T**.
SOLUTION: Suppose T is normal. Then

range T = (null T*)*
= (mull )t
= rangeT",
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where the first equality comes from 6.46(d), the second equality comes from
7.6 (see especially the marginal comment at 7.6), and the third equality
comes from 6.46(b).

7.  Prove that if T € £(V) is normal, then

null 7% = null T and range T* = range T

for every positive integer k.

SoLuTION: Suppose T € L(V) is normal and that k is a positive integer.
Obviously we can assume that k& > 2.
First we will prove that null 7% = nullT. If v € null T', then

Tky = TF=1(Tw)
=Tk
=0,

and so v € null 7%, Thus null T C null T*.

To prove an inclusion in the other direction, suppose now that v € null T*.
Then

(T*T* 1y, T*T* o) = (TT*T* v, TF o)
= (T*T*v, T )
= (0, T* o)
=40,

where the second equality holds because T*T = TT*. The last equality
above implies that T*T*~1y = 0. Thus ’

0 = (T*T* v, T*2y)
= (T* 1y, T* o).

Hence T%~1y = 0. In other words, v € null T*~!. The same argument, with
k replaced with k — 1, shows that v € null T%~2, Repeat this process until
reaching the conclusion that v € nullT. This shows that null T C null T,
completing that proof that null 7% = null T".

Now we will show that rangeT* = rangeT. If v € range T*, then there
exists u € V such that v = T*u = T(T*~!)u, which implies that v € rangeT.
Thus range T* C range T. Note that
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10.

dimrange T* = dim V — dim null T*
=dimV —dimnullT
= dimrangeT,

where the first and third equalities come from 3.4 and the second equality
comes from the first part of this exercise. Because rangeT* and rangeT
have the same dimension and one of them is contained in the other, these
two subspaces of V' must be equal, completing the proof.

Prove that there does not exist a self-adjoint operator T' € L(R3) such that
T(1,2,3) = (0,0,0) and T(2,5,7) = (2,5,7).

SoLuTION: Suppose T € L(R3) is such that T(1,2,3) = (0,0,0) and
T(2,5,7) = (2,5,7). Obviously (1,2,3) is an eigenvector of T with eigen-
value 0 and (2,5,7) is an eigenvector of T' with eigenvalue 1. If T° were
self-adjoint, then eigenvectors corresponding to distinct eigenvalues would
be orthogonal (see 7.8). Because (1,2,3) and (2,5,7) are not orthogonal,
T cannot be self-adjoint.

Prove that a normal operator on' a complex inner-product space is self-
adjoint if and only if all its eigenvalues are real.

CoMMENT: This exercise strengthens the analogy (for normal operators)
between self-adjoint operators and real numbers.

SOLUTION: Suppose V is a complex inner product space and T € £L(V)
is normal.

If T is self-adjoint, then by 7.1 all its eigenvalues are real.

Conversely, suppose that all the eigenvalues of T are real. By the com-
plex spectral theorem (7.9), there is an orthonormal basis (ey,...,eq) of V
consisting of eigenvectors of T. Thus there exist real numbers Ay,...,An
such that T'e; = Aje; for j = 1,...,n. .The matrix of T' with respect to
the basis (e, ..., ep) is the diagonal matrix with Aj,..., A\, on the diagonal.
This matrix equals its conjugate transpose. Thus T' = T™*. In other words,
T is self-adjoint, as desired.

Suppose V' is a complex inner-product space and T' € L£(V) is a normal
operator such that T° = T®. Prove that T is self-adjoint and T2 = T.

SOLUTION: By the complex spectral theorem (7.9), there is an orthonor-
mal basis (e, ..., e,) of V consisting of eigenvectors of T. Let );,...,\, be
the corresponding eigenvalues. Thus
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11.

12.

Tej = /\j&j

forj=1,...,n. Applymg T repeatedly to both sxdes of the equation above,
we get TgeJ = Aj%e; and T®e; = A;8;. Thus \;° = A;8, which implies that
Aj equals O or 1. In particular, all the elgenvalues of T are real. This implies
(by the previous exercise) that T is self-adjoint.

Applying T to both sides of the equation above, we get

2,. — \.20.
T e; = Aj°e;
= Ajej
=Te,-,

where the second equality holds because A; equals 0 or 1. Because 72 and
T agree on a basis, they must be equal.

Suppose V' is a complex inner-product space. Prove that every normal
operator on V has a square root. (An operator S € L(V) is called a square
rootof Te L(V)if S2=T.)

SoLuTiON: Suppose T € L(V) is normal. By the complex spectral
theorem (7.9), there is an orthonormal basis (ey, ..., en) of V consisting of

eigenvectors of T. Thus there exist complex numbers Aj,..., \, such that
Te; = Ajej for j = 1,...,n. Define S to be the operator on V such that
Se; = Ajl/ 2ej for j = 1,...,n; here Ajl/ 2 denotes a complex square root

of A; (every nonzero complex number has two square roots—it does not
matter which one is chosen). Then, as is easy to verify, S = T. Thus S is
a square root of T.

Give an example of a real inner-product space V and T € £(V) and real
numbers @, § with a? < 48 such that T? + aT + BI is not invertible.

CoMMENT: This exercise shows that the hypothesis that T is self-adjoint
is needed in 7.11, even for real vector spaces.

SoLuTioN: Let T € L(R?) be the counterclockwise rotation on R2; so
T(z,y) = (-, z) for (z,y) € R% Thus T? = —I. Taking o =0 and § = 1,
we have o2 < 48 and :

T2 +aT+BI=T2+1
=0.

In particular, T2 + oT + B is not invertible.
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13.

14.

Prove or give a counterexample: every self-adjoint operator on V has a cube
root. (An operator § € L(V) is called a cube root of T € L(V) if 83 =T.)

SoLUTION: Suppose T € L(V) is self-adjoint. By the spectral theorem
(7.13), there is an orthonormal basis (e1,...,e,) of V consisting of eigen-
vectors of T. The corresponding eigenvalues must be real (by 7.1). Thus
there exist real numbers Aj,..., A, such that Te; = Ajej for j =1,...,n.
Define S to be the operator on V such that S'ej = /\jl/ 3ej forj=1,...,n.
Then, as is easy to verify, S® = T. Thus § is a cube root of T', completing
the proof that every self-adjoint operator on V has a cube root.

Suppose T' € L(V) is self-adjoint, A € F, and € > 0. Prove that if there
exists v € V such that ||v]| =1 and

[Ty — M| < e,
then T has an eigenvalue )’ such that |A — M| <e.

SoLuTION: By the spectral theorem (7.13), there is an orthonormal
basis (ey,...,en) of V consisting of eigenvectors of T. Let Ay,..., A, be the
corresponding eigenvalues.

Suppose v € V is such that ||v|| = 1 and ||Tv — Av|| < e. From 6.17 we
have :

v= (U, 61)61 + -+ (’U, en)en7
and so
Tv = A(v,e1)e; + - - + An{v, en)en.
Thus
e > ||Tv — M|? .
= [(A1 = M) (v, e1)er + -« + (An — A) (v, €n)en]
= A1 = AP |(w en) P+ + A = AP[{v, ) 2

> (min{|Ar — AP, .., A = AP} (v, 1) + -+ + [{v, en)[2)
=min{|A\; — A%, ..., A — A%}

Thus € > |Aj — A| for some j. In other words, there is an eigenvalue whose
distance from A is less than ¢, as desired.
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15.

16.

17.

18.

Suppose U is a finite-dimensional real vector space and T € L(U). Prove
that U has a basis consisting of eigenvectors of T if and only if there is an
inner product on U that makes T into a self-adjoint operator.

SoLuTION: First suppose that U has a basis (e, ..., e,) of eigenvectors
of T. Because (ey,...,en) is a basis of U, every element of U can be uniquely
written as a linear combination of (e, .., es). Thus we can define an inner
product on U by ‘

(alel+"'+anemblel+"'+bnen) =ayb; + -+ + anbn.

It is easy to verify that this is indeed an inner product on U and that
(e1,...,en) is on orthonormal basis of U with respect to this inner product.
Because each e; is an eigenvector of T, the operator T has a diagonal matrix
with respect to the orthonormal basis (ey,...,e,). Thus T is self-adjoint.

Conversely, now suppose that there is an inner product on U that makes
T into a self-adjoint operator. Then by the spectral theorem (7.13), U has
a basis consisting of eigenvectors of T.

Give an example of an operator T on an inner product space such that T
has an invariant subspace whose orthogonal complement is not invariant
under 7.

CoMMENT: This exercise shows that 7.18 can fail without the hypothesis
that T is normal.

SoLuTION: Define T € L(F2) by T'(w, z) = (2,0). Then T'(w,0) = (0,0)
for all w € F. Thus the subspace U defined by U = {(w,0) : w € F} is
invariant under T. However, UL = {(0,2) : € F}, which is not invariant
under T because (0,1) € Ut but T(0,1) = (1,0) ¢ UL.

Of course there are also many other examples.

Prove that the sum of any two positive operators on V is positive.

SOLUTION: Suppose S and T are positive operators on V. Because S
and T are self-adjoint, so is S + T. Furthermore,

(S + T)v,v) = (Sv,v) + (Tv,v)
> 0.

Thus S + T is a positive operator, as desired.

Prove that if T € L(V) is positive, then so is T* for every positive integer k.
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19.

SoLuTION: Suppose T € L(V) is positive and k is a positive integer.
Then T* is self-adjoint (because T is self-adjoint).

First consider the case where k is an even integer. Then we can write
k = 2m for some positive integer m. Now

(T*v,v) = (T, v)
= (T™v, T™v)
>0

for every v € V, where the second equality holds because T is self-adjoint.
The inequality above shows that T* is positive, as desired.

Now consider the case where k is an odd integer. Then we can write
k = 2m + 1 for some nonnegative integer m. Now

(T*v,v) = (T? 1y, )
(T(T"“v) T™v)

for every v € V, where the second equality holds because T is self-adjoint
and the inequality holds because T is positive. The inequality above shows
that T* is positive, as desired.

Suppose that T is a positive operator on V. Prove that T is invertible if
and only if

(Tv,v) >0
for every v € V' \ {0}.

SoLuTION: First suppose that T is invertible. By 7.27, there exists an
operator § € L(V) such that T = S*S. Suppose v € V' \ {0}. Then Sv # 0
because otherwise we would have Tv = §*Sv = 0, which would contradict
the invertibility of 7. Now )

(Tv,v) = (S*Sv,v)
= (Sv, Sv)
>0,

as desired.

Now suppose that (T'v,v) > 0 for every v € V' \ {0}. In particular, this
means that T'v # O for every v € V'\ {0}. Thus T is injective, and hence T
is invertible (see 3.21), as desired.
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20.

21.

22.

23.

Prove or disprove: the identity operator on F? has infinitely many self-
adjoint square roots.

SoLUTION: For each t € [—1, 1], the operator whose matrix (with respect
to the standard basis) equals

[tﬂ]
vi—-g& -t

is self-adjoint and a square root of the identity operator, as can be verified by
squaring the matrix above. Thus the identity operator has infinitely many
self-adjoint square roots.

Prove or give a counterexample: if § € £(V') and there exists an orthonormal
basis (e, . ..,en) of V such that [|Se;|| = 1 for each e;, then S is an isometry.

SoLuTION: Define S € L(F?) by
S(w,2) = (w + 2,0).

With the usual inner product on F2, the standard basis ((1, 0), (0, 1)) is an
orthonormal basis of F2. Note that [|S(1,0)|| = [|S(0,1)|| = 1. However, S
is not an isometry because ||S(1,-1)| = 0.

Of course there are also many other examples.

Prove that if S € £(R3) is an isometry, then there exists a nonzero vector
z € R3 such that S%z = .

SoLuTION: Suppose S € L(R3) is an isometry. Then there is a basis of
R? with respect to which S has a block diagonal matrix, where each block
on the diagonal is a 1-by-1 matrix containing 1 or —1 or is a 2-by-2 matrix
(see 7.38). Because R3 has odd dimension, at least one of these blocks must
be a 1-by-1 matrix. In other words, either 1 or —1 must be an eigenvalue
of S. Thus there is a nonzero vector x € R3 such that Sz = )z, where
A ==+1. Hence

S%z = S(Sz) = S(Az) = ASz = A2z = 1.
Define T € L(F3) by
T(Zl, 22, 23) = (23,2.21,3.22).

Find (explicitly) an isometry S € L(F3) such that T = SvT*T.
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24.

SoLuTION: With respect to the standard basis of F3, we have

0 01
MIT)=|12 0 0 |.
030
Thus ,
0 20
M(T*)=10 0 3|.
1 00

Computing the product M(T*)M(T'), which equals M(T*T), we get
4 0 0
MTT)=|0 9 0.
0 01

From the matrix above, we see that (T*T)(21, 22, 23) = (421,929, 2z3). Thus
VT*T (21, 22, 23) = (221,329, 23). Hence if we define S € L(F3) by

S(zl) 22, Z3) = (231 21, 22),
then S is an isometry and T' = SVT*T.

Suppose T' € L(V), S € L(V) is an isometry, and R € £L(V) is a positive
operator such that 7' = SR. Prove that R = vT*T.

COMMENT: This exercise shows that if we write T as the product of an
isometry and a positive operator (as in the polar decomposition), then the
positive operator must equal vT*T. '

SoLuTiON: Taking adjoints of both sides of the equation T' = SR, we
have .

T =R*'S*
= RS,

where the last equation holds because R is positive (and hence self-adjoint).
Multiplying together our formulas for T* and T, we get

T*T = RS*SR
= R?
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25.

26.

27.

where the last equation holds because S is an isometry (and hence $*S =T
by 7.36). The equation above asserts that R is a square root of T*T"; because
R is positive, this implies that R = vT*T.

Suppose T' € L(V). Prove that T is invertible if and only if there exists a
unique isometry S € £(V) such that T' = SVT*T.

SoLuTiON: First suppose that T is invertible. The polar decomposition
(7.41) states that there exists an isometry S € £(V) such that

T =8VT*T.

Because T is invertible, this implies that v T*T is invertible (see Exercise 22

in Chapter 3). Thus the equation above implies that S = T(\/T*T)-l.
Because S must be given by this formula, we see that there is a unique
operator S € £(V) such that T = SvT*T, as desired.

Now suppose that there exists a unique isometry S € L(V) such that
T = SVT*T. This means that the linear map S, in the proof of the polar
decomposition (7.41) must be 0 because otherwise we could replace Sy with
—S3 and get another choice for S. But rangeS; equals (rangeT)!, and
hence (range T')* = {0}. This implies that range T = V, which implies that
T is invertible (by 3.21), as desired.

Prove that if T € L(V) is self-adjoint, then the singular values of T equal
the absolute values of the eigenvalues of T' (repeated appropriately).

SoLuTION: Suppose T € L(V) is self-adjoint. There exists an orthonor-
mal basis (e1,...,en) of V consisting of eigenvectors of T. Thus

Tej = Aje;

for each j, where Aj,..., A, € R are the eigenvalues of T. Thus

T'Te_,- = T2ej
= (\)%;
for each j. The equation above implies that vT*Te; = |Ajle; for each j.
Thus the singular values of T are |\, ..., ||, as desired.

Prove or give a counterexample: if T € L£L(V), then the singular values of T2
equal the squares of the singular values of T.

SoLuTiON: Define T € L(F?) by
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29,

30.

T(ZI,ZQ) = (22,0).

Then T*T(z1,22) = (0,22) and hence VT*T'(21,22) = (0,22). Thus the
eigenvalues of T*T are 0,1. Hence the singular values of T are 0, 1.
However, T? = 0, so the singular values of T2 are 0,0. Thus for this
operator T, the singular values of T2 do not equal the squares of the singular
values of T.
Of course there are also many other examples.

Suppose T' € L(V). Prove that T is invertible if and only if 0 is not a
singular value of T'.

SoLuTioN: If S € L£L(V) and ST =TS = I, then taking adjoints we get
T*S* = §*T* = I. Thus if T is invertible, then so is T,
Now
T is invertible <= T and T™ are invertible
<= T™*T is invertible

< VT*TVT*T is invertible
<= VT*T is invertible

<= 0 is not an eigenvalue of VT*T
<= 0 is not a singular value of T,

where the second and fourth equivalences follow from Exercise 22 in Chap-
ter 2.

Suppose T' € L(V). Prove that dimrangeT equals the number of nonzero
singular values of T.

SOLUTION: By the singular value decomposition (7.46), there exist or-
thonormal bases (u;,...,u,) and (wy,...,w,) of V such that

Tv = s1{v,u1)wy + - - - + sp (v, up)wy,

for every v € V, where sy,..., s, are the singular values of T. For each 7,
we have Tu; = sjw;. Thus each w; corresponding to a nonzero s; is in
rangeT. The equation above also shows that the w;'s corresponding to
nonzero s;’s span rangeT. Thus dimrangeT equals the number of nonzero
singular values of T,

Suppose § € L(V). Prove that S is an isometry if and only if all the singular
values of S equal 1.
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SOLUTION: We have

S is an isometry <> S*S =1
= V5S=1I
<= all the eigenvalues of V/S*S equal 1
<= all the singular values of S equal 1,

where the first equivalence comes from 7.36 and the third equivalence comes
from the spectral theorem (7.9 or 7.13) applied to the self-adjoint operator

VS*S.

Suppose T1, T, € L(V). Prove that T} and T3 have the same singular values
if and only if there exist isometries Sy, Sy € L(V) such that T} = $17%55.

SoLUTION: First suppose that T3 and T have the same singular values
S1--., Sp. By the singular-value decomposition (7.46), there exist orthonor-
mal bases (e1,...,en), (f1,-.-s fn)s (€1,--- €h), (fl,---, f) of V such that

Tiv=s1{v,e1) fi+ -+ + sn(v,€n) fa,
Tov = si(v,€1) fi+ -+ + sn(v,€) fh

for every v € V. Define Sy, S; € L(V) by

Sl(alf{ ++anfr’;) =aitfi+---+anfa,
Sa(are; + -« +anen) = ar€] + - -+ + anel.

Then

||5'1(a1f{ R +anf,',)||2 =|laifi +--- -l-anfn“2
= [o1[% + -+« + |ag)?
= llarfi + - + anfil?

and thus S is an isometry. Similarly, S is an isometry. This implies that
S3* = S5 (see 7.36). In particular, Sg‘eg = ¢;j. Now for v € V we have

To(S2v) = 51(Sav,e1) fi + -+ - + s5n(S2v, €}) £,
= 51(v, S2* ) fi +--- 4 sn(v, Sa*e}) £
= 31(”1 el)f{ +---+ Sn.(v) en)frlr
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Thus

S1(T2Sov) = s1{v,e1)81f] + -+ + sn{v,ex)S1 £l
= sl(”;el)fl R ERERE o sn(va en)fn
=Tiv

for every v € V. Hence S173S3 = T}, as desired.
To prove the implication in the other direction, now suppose that there
exist isometries S, Sz € L£L(V) such that T} = §1T»S2. Using 7.36, we have

TV'T = S 1 S1* 51T
= 5 1 y* T, S,.

This implies that T1*T} and T5*T, have the same eigenvalues (and that the
corresponding spaces of eigenvectors have the same dimensions). Thus T}
and T» have the same singular values.

32. Suppose T' € L(V) has singular-value decomposition given by
Tv= SI(U, el)fl +e 4+ Sn(‘U, en)fn

for every v € V, where sy, ..., s, are the singular values of T and (e;,...,e,)
and (f1,..., fn) are orthonormal bases of V.

(a) Prove that
T*v = s1(v, f1>61 +---+ sn(v, fn)en
for every v € V.,

(b) Prove that if T is invertible, then
oy Bl | (@ faen
51 Sn
for every v e V.

SoLuTiON: (a): Fix v € V. Then

(w, T*v) = (Tw,v)
= (s1{w,e1) fi + -+ - + sn{w, en) fn, V)
= si(w, e)){f1,v) +--- + sn(w,en)(fn,v)
= (w,s51(v, fi)er1 + - - - + 5a(v, fn)en)
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for all w € V. This implies that

T*v = s1{v, fi)e1 + - + sn(v, fn)en,

as desired.
(b): Suppose T is invertible. Let v € V and let

w= (vafl)el oot (v1fn)en;
S Sn

none of the singular values sy,..., s, equals 0 (see Exercise 28 of this chap-
ter), so this makes sense. Now

To = &AITes | fo)Ten

51 8n

— (‘U,fl)81f1 4ot (vvfn)snfn
S Sn

= (vafl)fl +---+ ('U:fn)fn

= .
Thus w = T~ !, as desired.

Suppose T' € L£(V). Let § denote the smallest singular value of T', and let s
denote the largest singular value of T. Prove that

8llvll < |ITw|l < sl
for every v € V.

SoLuTiON: Let v € V. By the singular value decomposition (7.46),
there exist orthonormal bases (uy,...,u,) and (wy,...,w,) of V such that

Tv =8 (U, ul)wl +---+ Sn(v, 'Un)wm

where s1,...,5, are the singular values of T. Because (uj,...,u,) and
(wy,-..,wy) are both orthonormal bases of V', we have

8lvl? = 82w, ) + - - + [{v, un)[?)
< 312|(v,u1)|2 +.--+ anI(v:un)|2
= || Tv?,
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34.

giving the first desired inequality. Also,

I1T0]? = s1?[{v, u1)[® + -+« + sn?|{v, un) ?
< (v, ) + -+ (v, un) )
= s°||v]?,

giving the second desired inequality.

Suppose TV, T" € L(V). Let s’ denote the largest singular value of TV, let s"
denote the largest singular value of 7", and let s denote the largest singular
value of TV + T¥. Prove that s < s’ + s”.

SoruTioN: Let T' = 7Y + T". Because s is a singular value of T, we
know that s is an eigenvalue of vT*T. Thus there exists a vector v € V
such that ||v|| = 1 and VT*Tv = sv. Now

s = ||sv]|

= |[VT*T||

= || T

= ||T"v + T"v||

<N T'|| + | T"v])

< §'||v]| + s"lv]]

= sl + S”
where the third line above comes from 7.42 and the sixth line above comes
from the previous exercise.



CHAPTER 8

Operators on |
Complex Vector Spaces

Define T € £(C?) by
T(w, z) = (z,0).
Find all generalized cigénvectors of T

SOLUTION: Suppose A is an eigenvalue of T. For this particular operator,
the eigenvalue-eigenvector equation T'(w, z) = A(w, z) becomes the system
of equations

z=Aw
0= Az

If A # 0, then the second equation implies that z = 0, and the first equation
then implies that w = 0. Because an eigenvalue must have a nonzero eigen-
vector, this shows that 0 is the only possible eigenvalue of T. For A = 0, the
equations above show that z must equal 0, but w can be arbitrary. Thus 0
is indeed an cigenvalue of T, and the set of eigenvectors corresponding to
this eigenvalue is

{(w,0): we F}.

Note that T2 = 0. Thus every vector in C? is a generalized eigenvector
of T (corresponding to the eigenvalue 0).

93
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Define T € £(C?) by
T(w,z) = (—z,w).
Find all generalized eigenvectors of T'.

SOLUTION: On page 78 of the textbook we saw that the eigenvalues of
T are i and —i. Note that T2 = —1I.

The set of generalized eigenvectors of T corresponding to the eigenvalue i
equals null(T" — iI)? (by 8.7). To compute this, note that

(T—4i)2=T2—-2iT -1
= =2 - 2T
= —2{(T — iI).
Thus null(T" — iI)? equals the set of eigenvectors of T' corresponding to
the eigenvalue 7. On page 78 of the textbook we noted that this equals
{(a,—ia) : a € C}.
The set of generalized eigenvectors of T' corresponding to the ecigen-
value —i equals null(T + iI)? (by 8.7). To compute this, note that

(T+iD?=T?2+2%T -1
= —2I + 2T
= 2i(T +4I).

Thus null(T' + iI)? equals the set of eigenvectors of T' corresponding to
the eigenvalue —i. On page 78 of the textbook we noted that this equals
{(a,ia) : a € C}.

Suppose T' € L£(V), m is a positive integer, and v € V is such that T 1y #0
but 7™v = 0. Prove that

(v, Tv, T?,... ,.T"‘_l'v)
is linearly independent.
SOLUTION: Suppose ag, aj,4a,...,am-1 € F are such that
agv + a1Tv + a2T* v+ - - + @1 T™ v = 0.

Because T™v = 0, if we apply T™! to both sides of the equation above, we
get agT™ 'v = 0. Because T™ v # 0, this implies that ag = 0. Thus the
equation above can be rewritten as
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aTv+ 02T2‘U + -+ am_le—l‘U =0.
Applying T™=2 to both sides of this equation, we get ¢;T™ v = 0. Thus
a; = 0. Continuing in this fashion, we have ag = a1 =ay =--- = a1 =0,
which means that (v,Tv,T?v,...,T™ ') is linearly independent.
4.  Suppose T € L(C3) is defined by T'(z, 22, 23) = (23, 23,0). Prove that T has
no square root. More precisely, prove that there does not exist S € £(C3)
such that §2 = T.
SOLUTION: Note that T3 = 0. Suppose there exists § € £(C3) such
that S? = T. Then S® = T3 = 0, so § is nilpotent. By 8.8, this implies that
83 = 0. Thus
T? = 5
=553
=0.
But T?(21, 23, z3) = (23,0,0), so T? is not the 0 operator, contradicting the
equation above. This contradiction shows that our supposition that there
exists S € £(C3) such that S? = T must have been false.
5.  Suppose S,T € L(V). Prove that if ST is nilpotent, then T'S is nilpotent.
SoLuTION: Suppose ST is nilpotent. Thus there exists a positive integer
n such that (ST)" = 0. Now
(TS)"*! = (TS)TS)...(TS)
=T(ST)(ST)...(ST)S
=T(ST)"S
= (T)(0)(S)
=0, )
and thus T'S is nilpotent. _
6.  Suppose N € L(V) is nilpotent. Prove (without using 8.26) that 0 is the

only eigenvalue of N.

SoLuTION: There is a positive integer m such that N™ = 0. This implies
that N is not injective, so 0 is an eigenvalue of N.

Conversely, suppose ) is an eigenvalue of N. Then there exists a nonzero
vector v € V such that
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Av = Nu.
Repeatedly applying N to both sides of this equation shows that

ATy =N"p
=0.

Thus A = 0, as desired. .

Suppose V is an inner-product space. Prove that if N € £(V) is self-adjoint
and nilpotent, then N = 0.

SoLuTION: Suppose N € L(V) is self-adjoint and nilpotent. Because N
is self-adjoint, there is an orthonormal basis (ei,...,en) of V consisting of
eigenvectors of N (by the spectral theorem). Because N is nilpotent, 0 is the
only eigenvalue of N (see Exercise 6 of this chapter). Thus the eigenvalue
corresponding to each e; must equal 0. In other words, Ne; = 0 for each j.
Because (e, ...,€y,) is a basis of V, this implies that N = 0.

Suppose N € L(V) is such that null N4im V-1 £ pyj) NdimV | pProve that N
is nilpotent and that

dimnull N7 = j
for every integer j with 0 < 7 < dimV.

SOLUTION: Because null NdimV=1 £ qull N9mV  we know (by 8.5) that
null N7~ = null N7 whenever 0 < j < dimV. Thus

{0} =nullN°g null N1 ¢ -G nuil NdimV-1 - null N4V,

At each of the strict inclusions in the chain above, the dimension must in-
crease by at least 1. However, if the dimension increases by more than 1
at any step, we would end up with dim null N4™V > dim V, a contradic-
tion because a subspace of V cannot have dimension larger than dim V.
Thus the dimension increases by exactly one at each step. In other words,
dimnull N7 = j for every integer j with 0 < j < dimV. In particular,
taking j = dimV, we have dimnull N9™V = dimV. This means that
null N4™V — v Thus N4mV — 0, and so N is nilpotent.

Suppose T' € L(V) and m is a nonnegative integer such that
range T™ = range T™*!.

Prove that range T* = range T™ for all k > m.
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10.

11.

SOLUTION: Suppose u € range T™!. Thus there exists a vector v in V
(the domain of T) such that u = T™+ly. Now T™v is in rangeT™, which
by our hypothesis equals range T™1!. Thus there exists w € V such that
T™y = T™+1y. Putting all this together, we have

u=Tmtly,
= T(T™v)
= T(T™+w)
= T2y,

Thus u € range T™*2. Because « was an arbitrary vector in range T™!, we
have shown that range T™*! C range T™+2. We also have an easy inclusion
in the other direction, so we conclude that range T™*! = range T™*2.

In the paragraph above, we showed that range 7™ = range T™*! implies
range T™*! = range T™*2. Apply that result, with m replaced with m + 1,
to conclude that range T™+2? = range T™%3. Continuing in this fashion, we
see that

range T™ = range T™*! = range T2 = .. .,
as desired.
Prove or give a counterexample: if T € £(V), then
V =nullT @ rangeT.
SoLuTION: Define T € L(F?) by T'(w, z) = (2,0). Thus
nullT = rangeT = {(w,0) : w € F},

which clearly implies that F? is not the direct sum of null T and range T
Of course there are also many other examples.

Prove that if T € £(V), then
V =nullT" & range T™,
where n = dim V.

SoLuTioN: Let T € £(V). First we show that

V = nullT" + range T™.
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12.

13.

To do this, let v € V. Then
v=(v-T"u)+T u

for any vector u € V. Obviously T"u € rangeT™. Thus looking at the
equation above, we see that we need to show that there exists u € V such
that v — T™u € nullT". In other words, we want a vector © € V such
that T%(v — T"u) = 0, which is equivalent to T"v = T?"u. But T™v €
rangeT™, and rangeT" = rangeT?" (by 8.9), so T"v € rangeT?". Thus
there indeed exists v € V such that T"v = T?"u, completing our proof
v € null T™ 4 range T™. Because v was an arbitrary vector in V, this implies
that V = nullT" + range T™.

For any linear map (and in particular for T™), the dimension of the
domain equals the sum of the dimensions of the null space and range (by 3.4).
In other words,

dim V = dim nullT™ + dimrange T™.

This equation, along with the equation V = nullT™ + range T™, implies that
V = nullT" @ range T" (by 2.19).

Suppose V is a complex vector space, N € L(V), and 0 is the only eigenvalue
of N. Prove that N is nilpotent. Give an example to show that this is not
necessarily true on a real vector space.

SoLuTION: Because 0 is the only eigenvalue of N, 8.23(a) implies that
every vector in V is a generalized eigenvector of T corresponding to the
eigenvalue 0. This implies that N is nilpotent.

Define T € L(R3) by

T(z,y,2) = (—y,z,0).

Then 0 is an eigenvalue of T because T(0,0,1) = (0,0,0). As can be ver-
ified from the definition of eigenvalue, T has no other eigenvalues (which
must be in R, because T is an operator on a real vector space). However,
T3(z,y,z) = (y, —z,0). In particular, T3 s 0. Thus T is not nilpotent.

Of course there are also many other examples.

Suppose that V is a complex vector space with dimV =n and T € L(V) is
such that

null 7772 # null T L.

Prove that T has at most two distinct eigenvalues.
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14.

15.

SoLuTiON: Because null 72 # nullT""!, we see that dimnull 7Y is
at least 1 more than dimnull7V~! for j = 1,...,n — 1 (by 8.5). Thus
dimnull 7"~! > n—1. In particular, 0 is an eigenvalue of T with multiplicity
at least n — 1. Because the sum of the multiplicities of all the eigenvalues
of T equals n (by 8.18), this implies that T" can have at most one additional
eigenvalue.

Give an example of an operator on C* whose characteristic polynomial
equals (z — 7)%(z — 8)2.

SoLuTiON: Define T € £(C*) by
T'(21, 22, 23, 24) = (721, T22, 823, 824).
Then null(T — 7I) is the two-dimensional subspace
{(z1,29,0,0) : 23,29 € C}
and null(T" — 81) is the two-dimensional subspace
{(0,0, 23, 2z4) : 23,24 € C}.

Thus 7 is an eigenvalue of T" with multiplicity at least 2 and 8 is an eigenvalue

of T with multiplicity at least 2. Because 2+2 = 4 = dim C*, there can be no

other eigenvalues of T" and the eigenvalues 7 and 8 must have multiplicity 2

(by 8.18). Thus the characteristic polynomial of T' equals (z — 7)%(z — 8)2.
Of course there are also many other examples.

Suppose V is a complex vector space. Suppose T' € L(V) is such that 5 and
6 are eigenvalues of T and that T has no other eigenvalues. Prove that

(T - 50" Y(T-6I)"1 =g,
where n =dimV.

SOLUTION: Because 5 and 6 are eigenvalues of T and T has no other
eigenvalues, the characteristic polynomial of T' must be of the form

(z = 5)%(z - 6)*%,

where 1 < d; and 1 < d;. Because d; +dy = n, we must also haved; <n—1
and dp < n — 1. The Cayley-Hamilton theorem implies that

(T — 51 (T — 6I)% = 0.
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16.

17.

Because d; <n —1 and da < n — 1, we can multiply the equation above by
appropriate powers of T — 51 and T — 61 to get (T —5I)" " {(T —6I)*! = .

Suppose V is a complex vector space and T' € £(V). Prove that V has a basis
consisting of eigenvectors of T if and only if every generalized eigenvector
of T is an eigenvector of T'.

CoMMENT: For complex vector spaces, this exercise adds another equiv-
alence to the list given by 5.21.

SoLUTION: First suppose that V' has a basis consisting of eigenvectors
of T. Thus there exists a basis (v1,...,v) of V and Ay,..., A\, € C such
that T'v; = Ajv; for each j. Suppose v € V is a generalized eigenvector of T
corresponding to an eigenvalue A. Because (vy,...,vy) is a basis of V, there
exist aj,...,a, € C such that

v=aiv + -+ apvy.
Thus
(T —ADv =\ — Najvy + - + (An = A)@nvn.
Applying T — A repeatedly to both sides of this equation, we get
(T - A" = (M —A)"a1v1 + - + O — A)antn.

The left side of the equation above equals 0 (because v is a generalized
eigenvector of T' corresponding to the eigenvalue X). Thus the right side
of the equation above equals 0. Thus (A; — A)"a; = 0 for each j. This
implies that the indices j such that a; # 0 must all have all satisfy Aj = A,
which means that v is a linear combination of the v;’s that correspond to
eigenvalue A, which means that v is itself an eigenvector corresponding to
eigenvalue A, as desired. :

To prove the other direction, now suppose that every generalized eigen-
vector of T' is an eigenvector of T'. By 8.25, there exists a basis of V consisting
of generalized eigenvectors of T. Because every generalized eigenvector of T

is an eigenvector of T', this gives a basis of V' consisting of eigenvectors of T,
as desired.

Suppose V' is an inner-product space and N € L(V) is nilpotent. Prove
that there exists an orthonormal basis of V' with respect to which N has an
upper-triangular matrix.
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18.

19.

SOLUTION: By 8.26, there is a basis of V with respect to which N
has an upper-triangular matrix. By 6.27, this basis can be chosen to be
orthonormal. (If V is a complex inner-product space, then we can just use
6.28 directly, so the hypothesis that N is nilpotent is not needed.)

Define N € £(FS) by
N(.'El, z2,T3,24, 2;5) = (21:2) 3237 —T4, 41"5) O)-

Find a square root of I + N.

SOLUTION: Note that

NQ(Zl,:Ez,:L‘;;, T4, 2:5) = (6173, —3:1:4, —4:1:5, 0, 0)
Na(xly z2,T3,Z4, 25) = (—61:4) _121:51 0: 0’ 0)
N4($1, T2,T3,%4, 3:5) = (_24175: 0,0, 0, 0)
Ns(xl) T2, 2:3:2:4125) = (010x0101 0)

Because N5 = 0, the proof of 8.30 shows that

1. 1., 1 . 5
I+ 5N - oN?+ oN° = N

is a square root of I + N. Using the formulas above, we calculate that the
operator .S € L£(F5) defined by

S(zlr X2, T3, T4, 3:5) =

(:l: +x _31:3_% 15175 T 3223 %_3&

1oy 8 16’ 27T 8 4
X4 Ts

T35 + 2 T4 + 2z5, 2?5)

is a square root of I + N.

Prove that if V' is a complex vector space, then every invertible operator
on V has a cube root.

SoLuTION: First suppose that N € £(V) is nilpotent. We will show
that I + N has a cube root by imitating the proof of 8.30. Specifically, we
guess that there is a cube root of I + N of the form

I+a;N+ayN?+... 4 ap (N™ L,
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20.

where m is such that N™ = 0. Having made this guess, we can try to choose
a,as,...,am-1 so that the operator above has its cube equal to I + N. Now

(I +a1N +agN? +a3N3 + - +ap N™1)2
= I+ 3a;N + (3az + 3a:2)N? + (3a3 + 6a1as + a®) N3 + - ..
+ (3am—1 + terms involving ay, ..., am-o)N™ L.

We want the right side of the equation above to equal I + N. Hence choose
a; so that 3a; = 1 (thus a; = 1/3). Next, choose a3 so that 3as + 3a6:2=0

(thus ay = —1/9). Then choose a3 so that the coefficient of N3 on the
right side of the equation above equals 0 (thus ag = 5/81). Continue in this
fashion for j = 4,...,m—1, at each step solving for a; so that the coefficient

of N7 on the right side of the equation above equals 0. Actually we don’t
care about the explicit formula for the a;’s. We need only know that some
choice of the a;’s gives a cube root of I + N.

Having shown that the identity plus a nilpotent always has a cube root,
we now look at the proof that every invertible operator on a complex vector
space has a square root (see 8.32). In that proof, if we replace the words
“square root” with “cube root”, we get a proof that every invertible operator
on a complex vector space has a cube root.

Suppose T € L(V) is invertible. Prove that there exists a polynomial
p € P(F) such that T-! = p(T).

SOLUTION: Let ag 4+ @12 + -+ + @m-12™"} + z™ denote the minimal
polynomial of T'. This is the monic polynomial of smallest degree such that

aol +a 1T+ +am T+ T™=0.

If ag were equal to 0, then we could multiply both sides of the equation
above by T~ to get

ail +aoT+ - +am T 2+T™ 1 =0,

which would give a monic polynomial g of smaller degree such that ¢(T") = 0,
contradicting the definition of the minimal polynomial. Thus ag # 0.

Because a9 # 0, we can solve the first equation above for the identity
operator I, getting

_ 1
[=-2p_.. Ifmlypm-1_ - qm
ao a9 ap



103 CHAPTER 8. Operators on Complex Vector Spaces

Now multiply both sides of the equation above by T~!, getting

1= _%y_ QT e — ﬁ‘;le—z - inn-l.
a  ag ag ag
Setting
plz)= - _%, . _%mimz 1 my
ag a9 Qg

we thus have T-! = p(T).
21.  Give an example of an operator on C? whose minimal polynomial equals 22.

SoLuTION: Define T € £(C3) by

T(wy, we, w3) = (w3, 0,0).

Clearly T2 = 0. In other words, the polynomial 22 when applied to T gives 0.
Thus the minimal polynomial of T is a divisor of 22 (by 8.34). But the only
monic polynomials that divide 2% are 1, 2, and z2. The polynomial 1 applied
to T gives the identity operator, which is not 0, and the polynomial z applied
to T gives T, which is also not 0. Thus the minimal polynomial of T must
be 22.

Of course there are also many other examples.

22. Give an example of an operator on C* whose minimal polynomial equals
z(z — 1)

SoLuTiON: Define T € L(C?) by
T(wy, w2, w3, ws) = (0, wp + wyg, w3, wy).

Then

(T — I)(w1, wo, w3, wq) = (—wy,wy, 0,0),
which implies that

(T — I)*(w1, w, w3, wq) = (w1,0,0,0),
which implies that

T(T-1)?=0.
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23.

In other words, the polynomial z(z — 1)? when applied to T gives 0. Thus
the minimal polynomial of T is a divisor of 2(z — 1)? (by 8.34).

Note that 0 is an eigenvalue of T because T'(1,0,0,0) = (0,0,0,0) and 1
is an eigenvalue of T" because T'(0,1,0,0) = (0,1,0,0). Thus 0 and 1 must
both be roots of the minimal polynomial of T (by 8.36).

The only monic polynomials that divide z(z — 1)? and have 0, 1 as roots
are z(z — 1) and z(z — 1)2. Because T(T — I) # 0, as is easy to check, this
implies that z(z — 1)? is the minimal polynomial of T

Of course .there are also many other examples.

Suppose V is a complex vector space and T' € L(V). Prove that V has a
basis consisting of eigenvectors of T if and only if the minimal polynomial
of T has no repeated roots.

COMMENT: For complex vector spaces, this exercise adds another equiv-
alence to the list given by 5.21.

SoLuTION: First suppose that there is a basis (v1, ..., v, ) of V consisting
of eigenvectors of T'. Let Ay,..., A\, be the distinct eigenvalues of T. Then
for each v;, there exists Ay with (T — AgI)v; = 0. Thus

(T = MI)...(T = AnI)vj =0

for each j (because all the operators in sight commute, for each j the appro-
priate T — A can be moved to the last position in the product above). An
operator that sends each vector in a basis to the 0 vector is the 0 operator,
so

(T = M) ...(T = AnI) = 0.

Thus the polynomial (z — A})...(z — A\;z) when applied to T gives 0. Thus
the minimal polynomial of T is a divisor of (z — A1)...(z — Am) (by 8.34).
Because (2 — A1)...(z — A;m) has no repeated roots, this implies that the
minimal polynomial of T" has no repeated roots, as desired. (Because each
eigenvalue of T' must be a root of the minimal polynomial of T, the minimal
polynomial of T actually equals (z — A1) ...(z — A\n).)

To prove the implication in the other direction, now suppose that the
minimal polynomial of T has no repeated roots. Letting \;,..., A, denote
the distinct eigenvalues of T', this means that the minimal polynomial of T
equals

(z=A)... (2= Am)-
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24.

Thus
(T—MI)...(T- 1) =0.

Let Uy be the subspace of generalized eigenvectors corresponding to the
eigenvalue Ar,. Recall that Uy, is invariant under T (see 8.23(b)). Suppose
v € Un. Let u = (T — A\ I)v, so u € Uy,,. The equation above implies that

(TIUm — AlI) cee (TIUm - /\m_lI)u = (T - A1I) fee (T — AmI)v
=0.

Because (T'— A\, I)|y,. is nilpotent (see sec 8.23(c)), 0 is the only eigenvalue
of (T — AmI)lu,, (this follows from 8.26 and 5.18). Thus Ty, — M is
invertible (as an operator on Uy,) for = 1,...,m — 1. The equation above
thus implies that u = 0. In other words, v is an eigenvector of T.

We have shown that every generalized eigenvector of T' corresponding to
the eigenvalue A, is an eigenvector of T. There is nothing special about the
eigenvalue A\,—we could have relabeled the eigenvalues so that any of them
was called Ap,. Thus we can conclude that every generalized eigenvector of
T is actually an eigenvector of T'. Because there is a basis of V consisting
of generalized eigenvectors of T (see 8.25), this means that there is a basis
of V consisting of eigenvectors of T, as desired.

Suppose V is an inner-product space. Prove that if T' € £(V) is normal,
then the minimal polynomial of T has no repeated roots.

SoLuTION: Suppose T € L(V) is normal. Let p denote the minimal
polynomial of T. Suppose A € F is an eigenvalue of T. We can write

p(2) = (z — )™q(2)

where m is a positive integer and ¢ is a monic polynomial such that g{\) # 0.
Our goal is to prove that m = 1, which implies that p has no repeated roots.

Because p(T') = 0, we know that (T"— A\I)™¢(T) = 0. This is equivalent
to the statement that

range ¢(T) C null(T — AI)™.

Because T' is normal, so is T — AI, and thus null(T' — AI)™ = null(T — AI)
(by Exercise 7 in Chapter 7). Hence the set inclusion above becomes

range ¢(T') C null(T — AI),
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25.

26.

which implies that (T'— AI)g(T} = 0. Letting pi(z) = (2—A)g(z), this means
that p; .is a monic polynomial with the property that py(T) = 0. If m > 1,
then the degree of p; would be less than the degree of p, contradicting the

definition of minimal polynomial. Thus we can conclude that m = 1, as
desired.

COMMENT: The proof given above works on both real and complex
vector spaces. If V is a complex vector space, then this exercise can be done
by using the complex spectral theorem (7.9) and Exercise 23 of this chapter.

Suppose T' € L(V) and v € V. Let p be the monic polynomial of smallest
degree such that

p(T)v =0.
Prove that p divides the minimal polynomial of T'.

SOLUTION: Let g denote the minimal polynomial of T. By the division
algorithm (4.5), there cxist polynomials s,r € P(F) such that

g=sp+r
and degr < degp. Thus
a(T)v = s(T)p(T)v + r(T)v.

Because ¢(T") = 0 and p(T")v = 0, the equation above shows that r(T)v =
0. This implies that r = 0 (otherwise we could multiply r by a scalar to
get a monic polynomial with degree smaller than degp that when applied
to T gives an operator having v in its null space, which would contract
the definition of p as the monic polynomial of smallest degree with this
property).

Using the information that r = 0, rewrite the formula above for ¢ as

q = sp.
Thus p divides g, the minimal polynomial of T'.

Give an example of an operator on C* whose characteristic and minimal
polynomials both equal z(z — 1)2(z — 3).

SoLuTiON: Define T € £(C?) by

T(un,we, w3, wyq) = (0, ws + w3, ws, 3wy).
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An easy computation shows that T(T — I)>(T — 38I) = 0. Thus the
minimal polynomial of T is a divisor of z(z — 1)?(z — 3) (by 8.34).

Note that 0 is an eigenvalue of T because T'(1,0,0,0) = (0,0,0,0) and 1
is an eigenvalue of T because T'(0,1,0,0) = (0,1,0,0) and 3 is an eigenvalue
of T because T(0,0,0,1) = (0,0,0,3). Thus 0, 1, and 3 must be roots of the
minimal polynomial of T' (by 8.36).

The only monic polynomials that divide z2(z—1)?(z—3) and have 0,1, 3 as
roots are z(z—1)(z—3) and z(z—1)*(z—3). Because T(T—1)(T'—3) # 0, as
is easy to check, this implies that z(z — 1)2(z —3) is the minimal polynomial
of T, as desired.

Because T is an operator on a four-dimensional complex vector space and
the minimal polynomial of T has degree 4, the characteristic polynomial of
T (which is a monic polynomial of degree 4 that is divisible by the minimal
polynomial of T') must equal the minimal polynomial of T.

Of course there are also many other examples.

Give an example of an operator on C* whose characteristic polynomial
equals z(z —1)2(z — 3) and whose minimal polynomial equals z(z — 1)(z —3).

SoLuTION: Define T € £(C*) by
T (w1, w2, w3, wq) = (0, we, w3, 3wy).

An easy computation shows that T'(T'—I)(T'—3I) = 0. Thus the minimal
polynomial of T is a divisor of z(z — 1)(z — 3) (by 8.34).

Note that 0 is an eigenvalue of T because T(1,0,0,0) = (0,0,0,0) and 1
is an eigenvalue of T" because T'(0, 1,0,0) = (0, 1,0,0) and 3 is an eigenvalue
of T because T(0,0,0,1) = (0,0,0,3). Thus 0, 1, and 3 must be roots of the
minimal polynomial of T (by 8.36).

The only monic polynomial that is a divisor of z(z — 1)(z — 3) and has
0,1,3 as roots is z(z — 1)(z — 3). Thus 2(z — 1)(z — 3) is the minimal
polynomlal of T, as desired.

Note that every vector in {(0, ws, w3,0) : ws, w3 € C) is an eigenvector
of T corresponding to the eigenvalue 1. Thus the eigenvalue 1 of T has
multiplicity at least 2. The eigenvalues 0 and 3 of T" have multiplicity at
least 1.

Because T is an operator on a four-dimensional complex vector space, the
sum of the multiplicities of all the eigenvalues equals 4 (by 8.18). Thus the
each use of the phrase “at least” in the previous paragraph can be replaced
by “equal” because if any of the eigenvalues had larger multiplicity, the sum
of the multiplicities of all the eigenvalues would exceed 4.



108

CHAPTER 8. Operators on Complex Vector Spaces

28.

Because 0 and 3 are eigenvalues of T' with multiplicity 1 and 1 is an
eigenvalue of T' with multiplicity 2 and T has no other eigenvalues (the mul-
tiplicities of the eigenvalues mentioned already sum to 4), the characteristic
polynomial of T equals z(z — 1)2(z — 3), as desired.

Of course there are also many other examples.

Suppose ag,...,an—1 € C. Find the minimal and characteristic polynomials
of the operator on C™ whose matrix (with respect to the standard basis) is

0 —QQ
1 0 —a)
1 - —Q2
0 —an-9
-3 1 —an—l -

CoMMENT: This exercise shows that every monic polynomial is the
characteristic polynomial of some operator.

SoLuTION: Suppose that T' € £(C") has matrix as above with respect
to the standard basis (e1,...,en) of C*. Thus

T61 = €2

T2€1 = T62 = €3

T" le; = Ten-1 =€,
T"e; = Ten = —age) — aj€2 — +++ — @p—1€n.

Thus
(el)TelyTzel, s ):rm—lel) = (61,62, €3,.-. :en)-

In particular, (e;, Te;,T2e1,...,T" le;) is linearly independent. Thus if p
is a monic polynomial with degree less than n, then p(T)e; # 0. Thus the
minimal polynomial of T must have degree n.

Writing T™e; as a linear combination of (e1,Tey, T?%e,...,T" le;) is
possible in only one way:

T"el = —ap€e1 — a1T61 — e — a.n_lT"‘—lel.

Thus setting
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29.

30.

p(z) =ag+ajz+---+ap_12" 1 + 2",

we see that p is the only monic polynomial of degree n such that p(T")e; = 0.
Hence p must equal the minimal polynomial of T

Because T is an operator on an n-dimensional complex vector space and
the minimal polynomial of T has degree n, the characteristic polynomial
of T (which is a monic polynomial of degree n that is divisible by the min-
imal polynomial of T) must equal the minimal polynomial of T. Thus the
characteristic polynomial of T also equals p.

Suppose N € L£(V) is nilpotent. Prove that the minimal polynomial of N
is 2™*! where m is the length of the longest consecutive string of 1’s that
appears on the line directly above the diagonal in the matrix of N with
respect to any Jordan basis for N.

SoLuTION: Suppose (v1,...,vn) is a Jordan basis for N and that m
equals the length of the longest consecutive string of 1's that appears on
the line directly above the diagonal of M(N, (v1,...,vs)). The diagonal of
MgN y (U1, ee e, vn); contains only 0’s (by Exercise 6 of this chapter). Thus

M(N, (vy,...,vg)) is a block diagonal matrix whose blocks have the form
0 1 0
1
0 0

and the largest such block in an (m + 1)-by-(m + 1) matrix. For each vj,
we see that N™+ly; = 0. Because N™t! equals 0 on a basis of V, we
conclude that N™+! = 0. Thus the minimal polynomial of N must divide
z™*+! (by 8.34) and hence must be of the form z* for some k < m + 1. But
there is a basis vector v; such that N™v; = vj_m 7# 0. Thus N™ # 0, which
implies that the minimal polynomial of N equals z™*!,

Suppose V' is a complex vector space and T € L£(V). Prove that there
does not exist a direct sum decomposition of V into two proper subspaces
invariant under T if and only if the minimal polynomial of T is of the form
(z = X)4™VY for some A € C.

SoLUTION: First suppose that there does not exist a direct sum decom-
position of V' into two proper subspaces invariant under T'. Thus T has only
one cigenvalue (by 8.23), which we will call A.
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There is a Jordan basis of T (by 8.47), meaning that with respect to this
basis T" has a block diagonal matrix

A 0

0 Am

where each A; is an upper-triangular matrix of the form

A1 0
Aj =

-, 1

0 A

If m > 1, then we could let U denote the span of the basis vectors corre-
sponding to A; and let W denote the span of the basis vectors corresponding
to Ua,...,Um; we would have V = U@ W, where U and W would be proper
subspaces of V invariant under T. This contradiction shows that m = 1.
Thus the matrix of T with respect to our Jordan basis is just A;. In other
words, there is a basis (vy,...,0dimv) of V such that the matrix of T — AJ
with respect to this basis is

0 1 0
1
0 0

The previous problem now implies that the minimal polynomial of ' — AJ
equals 29™V_ This clearly implies that the minimal polynomial of T equals
(z—A)4mV | as desired. )

To prove the implication in the other direction, suppose that the minimal
polynomial of T equals (z — A)¥™V. Suppose that there exist two proper
subspaces Uy, Us of V, each invariant under T, such that V = U; @ Us.

Let p; denote the minimal polynomial of T'|y, and p» denote the minimal
polynomial of T'|y,. If u; € U;, then

(P1p2)(T)u1 = p2(T)p1(T) s
=0.

Similarly, if up € U3, then
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(p1p2)(T)uz = p1(T)p2(T)uz
=0.

Because every vector in V can be written in the form u; +ug, where u; € U
and ug € Uy, the equations above imply that (p;p2)(T) = 0. Thus the
minimal polynomial of T', which equals (z — A)¥™V, is a divisor of p;py
(by 8.34). .

The degree of the monic polynomial p;ps equals the degree of p; plus the
degree of py, which is less than or equal to dim U; + dim Us, which equals
dim V. Because (z — A\)4™V is a divisor of p;po, this implies that

pi(2)p2(2) = (z — ¥V,
This implies that
n(z)=(z- /\)‘ﬂ“’u1 and po(2) =(z — /\)dimU"’.

Let m = max{dimU;,dim U,}. Let p(z) = (z — A)™. The equations above
show that p(T')|¢;, = 0 and p(T)|y, = 0. Thus p(T) = 0. Because the degree
of p is less than dim V/, this contradicts our hypothesis that (z—A)4™V is the
minimal polynomial of T. This contradiction means that our assumption
that there exists a direct sum decomposition of V into two proper subspaces
invariant under T must have been false, as desired.

Suppose T' € L(V) and (vi,...,v,) is a basis of V that is a Jordan ba-
sis for T. Describe the matrix of T with respect to the basis (Vny---,v1)
obtained by reversing the order of the v’s.

SoLuTioN: The matrix of T' with respect to (vy,...,vy) is a block di-
agonal matrix

A 0
0 An
where each A;j is an upper-triangular matrix of the form

A1 0

—
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Temporarily fix 7, and let (up,...,ux) be the part of (vy,...,v,) correspond-
ing to the block A;. Thus

Tu1 = Ajul
Tup = u; + Ajua
Tus = ug + Ajus

Tug = k-1 + Ajus.
Write the equations above in the form

Tug = Ajug + ug—1
Tup-_) = Ajug—y + U2

Tup = Ajus + ug

Tuy = Ajuy.
Thus the matrix of T'|span(u; ....u,) With respect to (u,...,u1) is
X 0
Bj=|!
0 . 1. Aj

In other words, B; is obtained from A; by reflection across the diagonal, so
in B; the 1’s lie below the diagonal instead of above it. Now we see that the
matrix of T with respect to (vy,...,v1) is the block diagonal matrix

B, 0

0 B



CHAPTER 9

Operators on |
Real Vector Spaces

Prove that 1 is an eigenvalue of every square matrix with the property that
the sum of the entries in each row equals 1.

SOLUTION: Suppose that A is an n-by-n matrix such that the sum of
the entries in each row of A equals 1. Let z be the n-by-1 matrix all of
whose entries equal 1. Then from the definition of matrix multiplication we
see that the entry in row j, column 1 of Az equals that sum of the entries
in row j of A, which equals 1. Thus Az = z, which implies that 1 is an
eigenvalue of A.

Consider a 2-by-2 matrix of real numbers

a ¢
A= sl
Prove that A has an eigenvalue (in R) if and only if
(a — d)? + 4bc > 0.

SOLUTION: A number A € R is an eigenvalue of A if and only if there
exist numbers z,y € R, not both 0, such that

EIMEME

The left side of this equation equals [ bz + dy

], so the equation above is

equivalent to the system of equations

113
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(a — Nz + cy=0
bx + (d—A)y =0.

It is easy to see that this system of equations has a solution other than
z =y =0if and only if

(a—A)(d—A) =be,
which is equivalent to the equation
A — (a+d)X+ (ad — bc) = 0.
There is a real number A satisfying the equation above if and only if
(a+ d)? — 4(ad — bc) > 0.

The left side of the inequality above equals (¢ — d)? + 4bc, and thus we
conclude that A has a real eigenvalue if and only if

(@ —d)? +4bec > 0.
Suppose A is a block diagonal matrix

A,y 0
A= )
0 A,

where each A; is a square matrix. Prove that the set of eigenvalues of A

equals the union of the eigenvalues of Ay,..., Ap,.

SOLUTION: Suppose that A; has size nj-by-n;. Let

T
where each x; is an n;-by-1 matrix. Then
A1$1
Az = :

AmZm

Thus the equation Az = Az is equivalent to the system of equations
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A1:l:1 = /\:1:1

ApTm = Az,

Suppose that ) is an eigenvalue of A. Then there is a nonzero vector z
satisfying the system of equations above. Because z is nonzero, there exists
k such that x; is nonzero. Because Agzy = Axg, this implies that ) is an
eigenvaluc of Ax. Thus A is in the union of the eigenvalues of Aj,..., A,
as desired.

To prove the implication in the other direction, suppose now that X is in
the union of the eigenvalues of Ay, ..., Ap,. Then there exists k such that A
is an eigenvalue of Ax. Thus there exists a nonzero ni-by-1 vector z; such
that Agzr = Azi. For j # k, define z; to be the n;-by-1 matrix all of whose
entries equal 0, and define z to be the matrix determined by z,...,z,, as
above. Then z is nonzero (because zx is nonzero) and Ar = Az, which
shows that A is an eigenvalue of A, as desired.

Suppose A is a block upper-triangular matrix
A *
A= .. ,
0 An
where each A; is a square matrix. Prove that the set of eigenvalues of A
equals the union of the eigenvalues of A;,..., An,.

COMMENT: Clearly Exercise 4 is a stronger statement than Exercise 3.
Even so, students may want to do Exercise 3 first because it is easier than

-Exercise 4.

SoLUTION: We will prove that 0 is an eigenvalue of A if and only if 0 is
an eigenvalue of at least one of the Ay’s. This is all we need to do, because
for arbitrary A € F, we can replace A with A— I and each A with A, — A,
concluding that A is an eigenvalue of A if and only if ) is an eigenvalue of at
least one of the Ay’s. This last statement implies that the set of eigenvalues
of A equals the union of the eigenvalues of 4;,..., A,,.

Suppose that A has size n-by-n and each A; has size nj-by-n;. We can
write a typical n-by-1 matrix z in the form

I

Im
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where each z; is an nj-by-1 matrix. The product Az can be computed by
multiplying together the block matrices of A and z given above, using the
same formula as one would use when multiplying matrices of numbers (this
follows from the definition of matrix multiplication).

First suppose that 0 is an eigenvalue of A. Thus there exists a nonzero
n-by-1 matrix = such that Az = 0. Write z in the form above, and let k be
the largest index with nonzero zj; thus we can write

I

L 0 -
(If k = m, then the 0’s shown above at the tail of z do not appear.) If we
break Az into blocks of the same size as was done for z, then the kt! block
of Az will equal Agzy; this follows from the block upper-triangular form of
A and the 0's that appear in z after the k! block. But Az = 0, so the kt®
block of Az equals 0, so Apzy = 0. Because zx # 0, this implies that 0 is
an eigenvalue of A, as desired.

To prove the implication in the other direction, suppose now that 0 is an
eigenvalue of some Ay. This means that the operator on Mat(n,1,F) (the
vector space of n-by-1 matrices) that sends z; € Mat(n, 1, F) to Agzx is not
injective. Thus this operator is not surjective (by 3.21). Thus the operator
on Mat(n; + - - - + ng, 1, F) that sends

I
Ty,
to
A]_ * )
0 A T

is not surjective (because the last block in the product above will be Aizg,
which cannot be an arbitrary ng-by-1 matrix). Again using 3.21, this means
that the last operator is not injective. In other words, there exists a nonzero
vector
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Iy
€ Mat(m + g, 1, F)
Tk
such that
A1 * T
*. . == 0.
0 Ay Tk

Adjoining an appropriate number of 0’s, this implies that

F,Al * I -:El-
A Tk | _g
Ap41 0 |

| 0 Am_ | 0 |

In other words, 0 is an eigenvalue of A, as desired.

5.  Suppose V i5 a real vector space and T' € £(V). Suppose o, 8 € R are
such that T2 + oT + BI = 0. Prove that T has an eigenvalue if and only if
o? > 48. .

SoLuTION: First suppose that T has an eigenvalue A\ € R. Thus there
exists a nonzero vector v € V such that Tv = Av. Applying T to both sides
of the last equation, we get T?v = A%v. Thus

0= (T? +aT + fI)v
=X+ aiv + fv
= (A2 +aX+ fB)w.

Because v # 0, the last equation implies that
Mirad+p=0,

which implies (recall that A, @, and 8 are all real) that a? > 48, as desired.

To prove the implication in the opposite direction, suppose now that
a? > 483. Then the polynomial 22 + az + f has two real roots, which means
that we can write
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2tar+p=(z—r)(x—ro)
for some 11,72 € R. Thus

0=T%+oT +8I
= (T — rI)(T — ro1).

In particular, (T — rI)(T — ro]) is not injective, which implies that at least
one of T'— I and T — roI is not injective. In other words, at least one of
r1,72 must be an eigenvalue of T. Thus T has an eigenvalue, as desired.

6. Suppose V' is a real inner-product space and T' € L£(V). Prove that there
is an orthonormal basis of V' with respect to which T has a block upper-
triangular matrix

A1 *®

0 Am
where each A; is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues.

SOLUTION: We know that there is a basis (v1,...,v,) of V with respect
to which the matrix of T has the block upper-triangular form above, where
each A; is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues (see 9.4).

Apply the Gram-Schmidt procedure to (vy,...,v,), getting an orthonor-
mal basis (ey,...,e,) of V such that

span(vy,...,v;) = span(ey,...;e;)

for j = 1,...,n (see 6.20). This condition on the spans implies that the
matrix of T' with respect to (ej,...,e,) is also a block upper-triangular of
the form above, where each A; is a 1-by-1 matrix or a 2-by-2 matrix (these
Aj’s may differ from the A;’s corresponding to the matrix of T with respect
to (v1,...,v,)). All that remains is to show that, if necessary, we can modify
our orthonormal basis so that none of the 2-by-2 blocks on the diagonal have
eigenvalues.

Suppose that A; is a 2-by-2 block on the diagonal of the matrix of T with
respect to (ey,...,en) and that A; has an eigenvalue A. Thus there exist
z,y € R, not both 0, such that
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Let eg, ex41 denote the basis vectors corresponding to A;. Then, as is easy
to verify, :

T(zer + yert+1) = u + A(zex + yer+1)
for some u € span(ey,...,ex—1). Let

_ Teg t+yer4
fr= 77—/
llzer + yerll

and choose fr4+1 € V such that (fi, fr41) is orthonormal and

span(fk, fr+1) = span(ex, €x+1)-

Then the matrix of T with respect to the orthonormal basis

(e1y---s€k—1, fis fit1s €ht2s - - -2 €n)

will be a block upper-triangular matrix with the same entries on the diagonal
as previously, except that A; will be replaced by the 2-by-2 matrix

A *

0 %= |
In other words, where we had A; on the diagonal, we can now think of
having two 1-by-1 matrices on the diagonal (and we still have a block upper-
triangular matrix because of the 0 in the lower-left entry of the matrix

above).
Repeating, when necessary, the procedure described above, we obtain an

-orthonormal basis of V' with respect to which T has a block upper-triangular

matrix

Al *
0 Am
where each Aj is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues.

Prove that if T € £L(V) and j is a positive integer such that j < dim V, then
T has an invariant subspace whose dimension equals j — 1 or j.

SoLuTioN: Suppose T € L(V) and j is a positive integer such that
j <dimV. If V is a complex vector space, then T has an invariant subspace
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whose dimension equals j (by Exercise 17 in Chapter 5). So we can assume
that V is a real vector space.

By 9.4, there is a basis (v1,...,v;) of V with respect to which T has a
block upper-triangular matrix

Ay *

0 Am
where each Ay is a 1-by-1 matrix or a 2-by-2 matrix. Either v;_; or v; must

be the last vector in a block of vectors corresponding to some Ag. Thus
either span(vy,...,v;_1) or span(vy,...,v;) must be invariant under 7.

Prove that there does not exist an operator T € L(R7) such that T2+ T+ I
is nilpotent.

SoLuTiON: Suppose T' € L(R7). From part (b) of 9.9 (combined with
9.4, which insures that T" has a matrix of the form 9.10 with respect to some
basis of R7), we see that

dim null(T? + T + I)?

must be an even integer. In particular, dim null(T? + T + I)7 # 7, which
implies that null(T? + T + I)? # R, which implies that (T2 4 T + I)7 # 0,
which implies that T is not nilpotent (by 8.8).

Give an example of an operator T' € £(C7) such that T2+ T+ is nilpotent.
SoLuTioN: Let A = (—1 4 3i)/2. Define T € £(C") by T = AI. Then

T24+T+I=O+A+1)I
=0.

In particular, T2 4+ T + I is nilpotent.

Suppose V is a real vector space and T' € L(V). Suppose a, f € R are such
that o? < 48. Prove that

null(T? + oT + BI)*
has even dimension for every positive integer k.

SoLuTION: Let k be a positive integer, and let U = null(T? +aT + gI)*.
We need to prove that dim U is even.
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12.

13.

Because U is invariant under T (by 8.22, with p(z) = (22 +az + 8)*), we
can define S € L(U) by S = T|y. Clearly (5% + aS + BI)F is the 0 operator
on U. Thus S? + &S + I is a nilpotent operator on U, which implies that
null(§2 +aS + BI)4™Y = U (by 8.8). Now part (b) of 9.9, applied to S and
U instead of T and V, shows that dim U is an even integer, as desired.

Suppose V is a real vector space and T € L(V). Suppose o, 8 € R are such
that a? < 48 and T? + oT + I is nilpotent. Prove that dim V is even and

(T? +aT + 1412 = .

SOLUTION: Let § = T2 + oT + fI. Because S is nilpotent, there is a
smallest positive integer m such that S™ = 0. Thus

- 2 —
{0}—nullS°$ nullS'_‘Cl_ null § G- C null S™ =V,

where the proper inclusions come from 8.5. The previous exercise states
that each null S* has even dimension (in particular V, which equals null S™,
has even dimension). Hence the dimension must increase by at least 2 in all
the proper inclusions above. Thus dim S™ > 2m, which clearly implies that
m < (dim V) /2. Because S™ = 0, this implies that §4mV/2 = 0 as desired.

Prove that if T € L(R3) and 5,7 are eigenvalues of T, then T has no
eigenpairs.

SOLUTION: Suppose that T € L£{R3) and 5, 7 are eigenvalues of T. Of
course each of these two eigenvalues must have multiplicity at least 1. By
9.17, the sum of the multiplicities of all the eigenvalues of T plus twice the
sum of the multiplicities of all the eigenpairs of T equals 3. Because the sum

of the multiplicities of all the eigenvalues of T is at least 2, there is no room

for an eigenpair, which would add at least 2 more to the sum (because we
take twice the sum of the multiplicities of all the eigenpairs). Thus T has
no eigenpairs. )

Suppose V is a real vector space with dimV = n and T' € £(V)) is such that
null 772 # null 77,

Prove that T has at most two distinct eigenvalues and that T has no eigen-
pairs.

SoLUTION: Because null T7"2 # null T"!, we see that dimnull 7Y is
at least 1 more than dimnullTV~! for j = 1,...,n — 1 (by 8.5). Thus
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dimnullT*"! > n — 1. In particular, 0 is an eigenvalue of T' with mul-
tiplicity at least n — 1. Because the sum of the multiplicities of all the
eigenvalues of T plus the sum of twice the multiplicities of all the eigenpairs
of T equals n (by 9.17), this implies that T can have no eigenpairs and at
most one additional eigenvalue.

Suppose V' is a vector space with dimension 2 and T € £(V). Prove that if

]

is the matrix of T with respect to some basis of V, then the characteristic
polynomial of T equals (z — a)(z — d) — be.

COMMENT: As usual unless otherwise specified, here V may be a real
or complex vector space.

SoLuTioN: Let ¢(z) = (z — a)(z — d) — be. If (v1,v2) is the basis of V
with respect to which T has the matrix above, then

Tvy =avy +bvy and Twvy = cvy + duvs.

From these equations you can easily verify that ¢(T")v; = 0 and ¢(T)v; = 0.
Because ¢(T') is 0 on a basis of V, we conclude that q(T") = 0.

Because ¢ is a monic polynomial of degree 2 and ¢(T') = 0, we conclude
that the minimal polynomial of T has degree 1 or 2.

Suppose first that the minimal polynomial of T has degree 2. Because
the minimal polynomial of T is a divisor of g (by 8.34), and because a monic
polynomial of degree 2 can be a divisor of another monic polynomial of

" degree 2 only if the two polynomials are equal, we conclude that q is the

minimal polynomial of T. The Cayley-Hamilton theorem now implies that
g is a divisor of the characteristic polynomial of T, which is also a monic
polynomial of degree 2. This implies that g is the characteristic polynomial
of T, as desired.

Now consider the only remaining possible case, which is that the minimal
polynomial of T has degree 1, meaning that it equals z — X for some X € F.
This implies that T = AI, which implies that the characteristic polynomial
of T equals (z—\)2. Because T = AI, we must havea =d = Aand b= c = 0.
Thus g(z) = (2 — A)2. In particular, g is the characteristic polynomial of T,
as desired.

CoMMENT: Note that we did not need to find the eigenvalues of T to
do this exercise.
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Suppose V is a real inner-product space and § € £(V) is an isometry. Prove
that if (a, §) is an eigenpair of S, then 8 = 1.

SoLuTION: There is a basis of V' with respect to which S has a block
diagonal matrix, where each block on the diagonal is a 1-by-1 matrix or a
2-by-2 matrix of the form

cosf —siné
sinf cosd |’

with 8 € (0, n) (see 7.38). The characteristic polynomial of the matrix above
is (z — cos6)? + sin? 4, which equals 22 — 2(cos )z + 1.
If (o, B) is an eigenpair of S, then

dim null(S? + a8 + g1)4=Y > o,

which implies that 2 + ax + 8 is the characteristic polynomial of a 2-by-2
matrix of the form displayed above (see 9.9). Thus 8 = 1.



CHAPTER 10

Trace and Determinant

Suppose that T € L(V) and (v1,...,v,) is a basis of V. Prove that
M(T, (v, ... ,Vn)) is invertible if and only if T is invertible.

SOLUTION: First suppose that M(T') is an invertible matrix (because the
only basis is sight is (v1, ..., v,), we can leave the basis out of the notation).
Thus there exists an n-by-n matrix B such that

M(T)B = BM(T) = 1.

There exists an operator S € L(V') such that M(S) = B (see 3.19). Thus
the equation above becomes

M(T)M(S) = M(S)M(T) =1,
which we can rewrite as
M(TS) =M(ST) = M(I),
which implies that
TS =ST=1.

Thus T is invertible, as desired, with inverse S.
To prove the implication in the other direction, suppose now that T is
invertible. Thus there exists S € £(V) such that

TS=ST=1I

This implies that

124
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M(TS) = M(ST) = M(I),
which implies that
M(T)YM(S) = M(SIM(T) = 1.
Thus M(T') is invertible, as desired, with inverse M(S).

Prove that if A and B are square matrices of the same size and AB = I ,
then BA = I.

SoLuTION: Suppose that A and B are n-by-n matrices and AB = I.
There exist S,T € L(F") such that

M(S)=A and M(T) = B;

here we are using the standard basis of F" (the existence of S,T € L(F")
satisfying the equations above follows from 3.19). Because AB = I, we have
M(S)M(T) = I, which implies that M(ST) = M(I), which implies that
ST = I, which implies that T'S = I (by Exercise 23 in Chapter 3). Thus

BA = M(T)M(S)
= M(TS)
= M(I)
=1.

Suppose T' € L(V) has the same matrix with respect to every basis of V.
Prove that T is a scalar multiple of the identity operator.

SoLUTION: We begin by proving that (v, Tv) is linearly dependent for
every v € V. To do this, fix v € V, and suppose that (v,Tv) is linearly
independent. Then (v,Tv) can be extended to a basis (v, Tv,u1,...,un)
of V. The first column of the matrix of T' with respect to this basis is

0

ot

0
0

Clearly (2v,Tv,u;,...,uy) is also a basis of V. The first column of the
matrix of T with respect to this basis is
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o

b, O o
Thus T has different matrices with respect to-the two bases we have consid-
ered. This contradiction shows that (v,T) is linearly dependent for every
v € V. This implies that for every vector in V is an eigenvector of T'. This
implies that T is a scalar multiple of the identity operator (by Exercise 12
in Chapter 5).

Suppose that (u,...,u,) and (v;,...,v,) are bases of V. Let T € L(V} be
the operator such that Tvy = ui for k =1,...,n. Prove that

M(T, (v1,...,vn)) = M(I, (u1,...,tn), (v1,...,vp)).

SoLuTioN: Fix k. Write
Up = ajv1 + -+ antn,

where ay,...,a, € F. Because Tupy = ug, the k" column of the matrix
M(T, (v, .. ,Un)) consists of the numbers ay,...,a,. Because Iux = ug,
the k** column of M(I,(u1,...,un),(v1,...,v,)) also consists of the num-
bers ay,...,a,. '

Because M(T, (v1,...,vs)) and M(I,(u1,...,%a), (v1,...,vs)) have the
same columns, these two matrices must be equal.

" Prove that if B is a square matrix with complex entries, then there exists

an invertible square matrix A with complex entries such that A~1BA is an
upper-triangular matrix.

SoLuTION: Suppose B is an n-by-n ‘matrix with complex entries. Let
(e1,--.,€eq) denote the standard basis of C". There exists T € L(C™) such
that M(T,(e1,...,en)) = B (see 3.19).

There is a basis (vy, . . ., vn) of V such that M (T, (vy,..., vp)) is an upper-
triangular matrix (see 5.13). Let A = M((vy,...,v.), (e1,-.. ,en)). Then
A is invertible (by 10.2) and

AT'BA=AT"M(T, (en,-..,en))A
= M(Ta (‘U],... 1vn)))
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where the second equality comes from 10.3. Thus A"1BA is an upper-
triangular matrix.

Give an example of a real vector space V and T € L£(V) such that
trace(T?) < 0.
SoLuTION: Define T € L(R?) by
T(z,y) = (-v,2).
Then T2 = —I, so trace(T?) = -2.

Suppose V is a real vector space, T € £L(V), and V has a basis consisting of
eigenvectors of T. Prove that trace(T2) > 0.

SoLuTION: Let (v1,...,v,) be a basis of V consisting of eigenvectors
of T. Thus there exist Aj,...,A, € R such that Tv; = \jv; for each j.
Clearly the matrix of T2 with respect to the basis (vy,.. ., v,) is the diagonal
matrix

A2 0
0 An?
Thus traceT? = A\ 2 +---+ X2 > 0.

Suppose V is an inner-product space and v,w € £(V). Define T' € L(V) by
Tu = (u,v)w. Find a formula for traceT.

SoLUTION: First suppose that v # 0. Extend (“%") to aﬁ orthonormal

‘basis ("—3“,61, .--,€n) of V. Note that for each j, we have Te; = 0 (because

(ej,v) = 0). The trace of T equals the sum of the diagonal entries in the
matrix of T with respect to the basis ("T‘jrr,el, ..-y€n). Thus

traceT = (T(II::_“)’ “:—”) + (Teg,er) + -+ (Ten, €,)

v

= ((”‘U_”, v)w, Tlv_“)

= (w, v).

If v =0, then T = 0 and so traceT = 0 = {w,v). Thus we have the
formula
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trace T = (w, v)
regardlées of whether or not v = 0.
9.  Prove that if P € L(V) satisfies P2 = P, then trace P is a nonnegative
integer.
SoLuTiON: Suppose that T' € L(V) satisfies P2 = P. Let (uy,...,%n)
be a basis of range P and let (v1,...,v,) be a basis of null P. Then
(ul’--':um’vlv-'-’vn)
is a basis of V' (this holds because V = rangeT @ null T; see Exercise 21
in Chapter 5). For each u; we have Pu; = u; and for each vy we have
Pyg = 0. Thus the matrix of P with respect to the basis above of V is
a diagonal matrix whose diagonal contains m 1’s followed by n 0’s. Thus
trace P = m, which is a nonnegative integer, as desired. In fact, we have
shown that
trace P = dim range P.
10.  Prove that if V' is an inner-product space and T € £(V), then
trace T* = trace T
SOLUTION: Suppose that V is an inner-product space and T € L(V).
Let (ei,...,en) be an orthonormal basis of V. The trace of any operator on
V equals the sum of the diagonal entries on the matrix of the operator with
_respect to this basis. Thus
traceT* = (T"e;,e1) + -+« + (T*en, en)
= (e1,Te1) + -+ (en, Ten)
= (Tey,e1) + -+ (Ten, en)
= (Tel,el) +--+ (Temen)
= traceT.
11. Suppose V is an inner-product space. Prove that if T € £(V) is a positive

operator and traceT = 0, then T = 0.

SOLUTION: Suppose T € L(V) is a positive operator and trace T = 0.
There exists an operator S € L(V) such that T = $*S (by 7.27). Let
(e1,--.,en) be an orthonormal basis of V. Then
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13.

14.

0 = traceT
= (Te1,e1) + -+ (Ten, en)
= (S*Sey,e1) +--- + (S*Sen, en)
= [ISex|l® + - + [|Seal>.

The equation above implies that Se; = 0 for each j. Because S is 0 on a
basis of V, we have S = 0. Because T = §*8, this implies that T" = 0.

Suppose T € L£(C3) is the operator whose matrix is

51 —-12 -21
60 —40 -28].
57 —-68 1

Someone tells you (accurately) that —48 and 24 are eigenvalues of T. With-
out using a computer or writing anything down, find the third eigenvalue
of T.

SoLUTION: The sum of the eigenvalues of T equals the sum of the
diagonal terms of the matrix above (both quantities equal trace T). The
sum of the diagonal terms of the matrix above equals 12. The sum of two of
the eigenvalues of T, —48 and 24, equals —24. Because the sum of all three
eigenvalues of T' must equal 12, the third eigenvalue of T' must be 36.

Prove or give a counterexample: if T € £(V) and c € F, then trace(cT) =
ctraceT.

SoLuTiON: Suppose T' € L(V) and ¢ € F. To prove that trace(cT) =
ctrace T, consider a basis of V. Then trace T equals the sum of the diagonal
terms of the matrix of T' with respect to this basis. The matrix of ¢T", with
respect to the same basis, equals ¢ times the matrix of T. Thus the sum
of the diagonal terms of the matrix of ¢ equals ¢ times the sum of the
diagonal terms of the matrix of T. In other words, trace(cT) = ctrace T

Prove or give a counterexample: if S,T € L(V), then
trace(ST) = (trace S)(trace T').

SOLUTION: Define S,T € L(F?) by S(z,y) = T(z,y) = (—y,z). Then
with respect to the standard bases the matrix of S (which of course equals
the matrix of T') is
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0 -1
1 0 |°
Thus trace S = traceT = 0. However, ST = —I, so trace ST = —2. Thus

for this choice of S and T, we have trace(ST) # (trace S)(trace T).
Of course there are also many other examples.

Suppose T' € L(V). Prove that if trace(ST) = 0 for all § € £(V), then
T=0.

SoLUTION:  Suppose that trace(ST) = 0 for all S € L(V). Then
trace(T'S) = 0 for all S € £(V') (by 10.12). Suppose that there exists v € V
such that Tw # 0. Then (T'v) can be extended to a basis (Tv,uy,...,u,)
of V. Define S € L(V) by

S(aTv + byug +- - + bpuy) = av.

Thus §(Tv) = v and Su; = 0 for each j. Hence (T'S)(Tw) = T(S(Tv)) = Tv
and (TS)(uj) = O for each j. This implies that with respect to the basis
(Tv,u1,...,un), the matrix of T'S consists of all 0's except for a 1 in the
upper-left corner. Thus trace(T'S) = 1. This contradiction shows that our
assumption that T'v % 0 must have been false. Thus Tv = 0 forevery v € V,
which means that T = 0.

Suppose V is an inner-product space and T € £(V'). Prove that if (e, ..., e,)
is an orthonormal basis of V, then

trace(T*T) = || Tey||® + - + || Tenl|%

.Conclude that the right side of the equation above is independent of which

orthonormal basis (ey,...,e,) is chosen for V.

SOLUTION: Suppose that (ei,...,ey,) is an orthonormal basis of V. Then

traceT*T = (T*Tey,e1) + -+ (T*Ten, e,)
= (Tey,Ter) + -« + (Tep, Tey)
= [Ter]® + - - + ([Teal®.
Because traceT*T does not depend upon the choice of a basis of V,

the formula above shows that |[Te;|[? + - -- + |[Ten||? is independent of the
orthonormal basis (ey, ..., en)-
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Suppose V' is a complex inner-product space and T' € L(V). Let Ay, ... 2y An
be the eigenvalues of T, repeated according to multiplicity. Suppose

a1 ... Q1n

Qnl ... Qnan
is the matrix of T with respect to some orthonormal basis of V. Prove that
k13 n
P+ PP <SS aal®
k=1 j=1

SOLUTION: Suppose that (ej,...,e,) is the orthonormal basis with re-
spect to which T has the matrix above. Thus for each k, we have

Ter = ajke1+ -+ +anken,
which implies that
[ Terl® = fas il* +- - + ankl2
Thus
n n
ITerl|? +--- + [Teall® =YY~ lazul®.
k=1 j=1

By the previous exercise, the left side of this equation equals trace(T™T).
This reduces the exercise at hand to proving that

[A1[? + <« + [An]? < trace(T*T).

There is an orthonormal basis (fi,... y fn) with respect to which T has
an upper-triangular matrix (by 6.28). The diagonal entries of the matrix of
T with respect to (fi,..., fn) are precisely Ay,..., A, (by 8.10), where we
can relabel the eigenvalues of T so that they appear in the order AlyeeyAn
along the diagonal. In other words,

A] *
M(T’(f].’"'!fﬂ)) =

From the matrix above, we see that
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IMel? < 1T £ell?
for each k. Thus

AP+ Dl < ITAIP + - + I Tfall
= trace(T*T),

as desired (here the last equality comes from ‘the previous exercise).
Suppose V is an inner-product space. Prove that

(S, T) = trace(ST™)
defines an inner product on L(V).

SOLUTION: Suppose that (-,-) is defined as above and R, S,T € L(V).
Then (T,T) = trace(TT*), and thus (T, T) > 0 (by the formula given in
Exercise 16 of this chapter, with T replaced with T*). Because T'T* is a
positive operator (see 7.27), we also see that (T,T) =0 if and only if T =0
(by Exercise 11 of this chapter).

Now

(R+8,T) = trace((R+ S)T*)
= trace(RT"* + ST™)
= trace(RT™) + trace(ST™)
=(R,T) +(5,T),

where the third equality comes from 10.12.
For c € F, we have

(cS,T) = trace(cST™)
= ctrace(ST™)
=¢(S,T),

where the second equality comes from Exercise 13 of this chapter.
Finally,

(S,T) = trace(ST™)
= trace((ST*)*)
= trace(T'S*)

= (SiT)!
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where the second equality comes from Exercise 10 of this chapter.
We have shown that (-, -) satisfies all the properties required.of an inner
product.

COMMENT: Suppose (ey,...,ey) is an orthonormal basis of V and

a1l ... Qin

Gnl ... Qnn

is the matrix of T' with respect to this basis. Then

(T, T) = trace(TT™)
= trace(T*T)
n n )
=) ekl
k=1 j=1

where the second equality comes from 10.12 and the third equality comes

{rom Exercise 16 of this chapter. Thus the norm on £(V') induced by (-, )

is the same as the standard norm on F’ (here we are identifying each
operator with its matrix, which has n? entries). Because norms determine
the inner product (see Exercises 6 and 7 in Chapter 6), this means that the
inner product (-,-) is the same as the standard inner product of F* (again
using the identification via matrices with respect to the orthonormal basis
(e1y---,en)).

Suppose V' is an inner-product space and T € £(V). Prove that if
IT*v]| < || T

for every v € V, then T is normal.

SOLUTION:  Suppose that ||[T*v|| < ||Tv|| for every v € V. Suppose
u € V with |[u|| = 1. Extend (u) to an orthonormal basis (u,ey,...,ep)
of V. Then

trace(TT*) = (| T*u|® + [|[T*es > +--- + 1T eq |2
STl + [Terl|® +- - - + || Teall>
= trace(T*T)
= trace(TT"),
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21.

where the first and third lines come from Exercise 16 of this chapter and
the last line comes from 10.12. Because the first and last lines above are
equal, we must have equality throughout. Thus ||T*u|| = ||T'u||. This clearly
implies that

IT*(aw)|| = ([T (au)]

for every a € F. Because every vector in V can be written in the form au for
some a € F and some u € V with ||u|| = 1, this implies that ||[T*v|| = ||Tv||
for every v € V. This implies that T is normal (by 7.6).

COoMMENT: This exercise fails on infinite-dimensional inner-product
spaces, leading to what are called hyponormal operators, which have a well-
developed theory.

Prove or give a counterexample: if T € L£(V) and ¢ € F, then det(cT) =
climV det T

SoLUTION: Let n=dimV. If 4 is an n-by-n matrix, then
det(cA) = c"det A

for every ¢ € F (this follows immediately from the definition 10.25). Now
suppose that T' € £L(V). Because det T" equals the determinant of the matrix
of T with respect to any basis (see 10.33), the equation above implies that
for every ¢ € F we have

det(cT) = det M(cT)
= det(cM(T))
= c"det M(T)
=c"detT,

as desired. .
Prove or give a counterexample: if §,T € £(V), then
det(S+T)=detS +detT.
SoLuTioN: Define S, T € L(F?) by
S(z,y) = (2,0) and T(z,y) =(0,y).

Then S and T are both not invertible. Thus detS = detT = 0 (by 10.14).
However, S+ T = I and det I =1, so det(S + T') # det S + det T".
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Of course there are also many other examples.
Suppose A is a block upper-triangular matrix

Ay *
A= t.. y
0 Am

where each A; along the diagonal is a square matrix. Prove that
det A = (det Ay)... (det Am).

SoLuTION: First consider the case where m = 2, so we can write A in

the form
B x
=[5 ¢

where B is an n-by-n matrix

b1,1 bin
B= :
R bn,l bn,n
and C is a p-by-p matrix
[c11 ... cp
Cc=1 : :
L CP!]_ e Cpxp

Let a; denote the entry in row j, column k of A. Note that a;x =0ifj > n

and k < n (this follows from the block upper-triangular form of A). Because
A is an (n + p)-by-(n + p) matrix, to compute det A we need to consider a
typical permutation (my,...,Mn4p) € perm(n + p). If any of my, ..., my, is
greater than n, then

Amy 1. Ampypnip = 0.

Thus in computing det A we need only consider permutations in which the
first n coordinates all come from {1,...,n}, which means that the last p
coordinates all come from {n +1,...,n + p}. We can break any such per-
mutation (my,...,Mmu4p) into two pieces: a permutation of {1,...,n} and
(relabeling n + 1,...,n+pas 1,...,p to correspond to the labeling of the
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entries of C) a permutation of {1,...,p}. Clearly the sign of (m,. .., mn4p)
will equal the product of the signs of these two permutations. Putting all
this together, we have

det A = Z (sign(mi, ..., Mnyp))@my 1 --- O ppintp
(m1,...sMntp)Eperm(ntp) :

= Y [(siEmGs0) siEnhs . k) -

(1. Jdn)Epermn
(k1,....kp)Epermp

bis1 -+ jnnChi 1 - - Chipp)
= Z (sign(jl, . )jn))bjl,l PN bj,.,n -
(j1,-.dn)€permn
Z " (sign(ky, ..., kp))cry1--- Chy p
(k1y....kp)Epermp

= (det B)(det C),

completing the proof when m = 2.
Suppose now that m > 2 and

A1 *
A=
0 Am
Writing
Ay *
B == . y
0 Am—l
we have
B x
=[5 an
Thus

det A = (det B)(det A,)
= (det A;)...(det Ap—1)(det A,),
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23.

24.

where the first equality holds by the m = 2 case proved above and the
second equality comes from induction on m (meaning that we can assume
the desired result holds when m is replaced with m — 1).

Suppose A is an n-by-n matrix with real entries. Let S € £(C") denote
the operator on C™ whose matrix equals A, and let T' € £L(R"™) denote the
operator on R™ whose matrix equals A. Prove that trace S = traceT and
det S =detT. '

SoLUTION: The formulas defining the trace and determinant of a matrix
do not depend upon whether we think of the matrix entries as real or complex
numbers. We have trace A = traceS and trace A = traceT (by 10.11).
Thus trace S = trace T'. Similarly, we have det A = det S and det A = det T
(by 10.33). Thus det S = det T'.

Suppose V' is an inner-product space and T € L(V). Prove that
detT* =detT.

Use this to prove that |[det T'| = det VT'*T, giving a different proof than was
given in 10.37.

SoLUTION: Let n=dimV. If A € F, then ((T - /\I)")* = (T* - M),
which implies that

dim null(T — A" = dim null(T* — AI)",

where we have used Exercise 31 in Chapter 7. The equation above shows that
the eigenvalues of T™ are precisely the complex conjugates of the eigenvalues
of T, with the same multiplicities. If F = C, the determinant equals the
product of the eigenvalues, counting multiplicity, so we have det T* = det T
(so far just on complex vector spaces).

Now suppose F = R, so we must consider eigenpairs. If a, 3 € R, then

dim null(T? + oT + BI)" = dim null((T*)? + aT* + BI)",

again by Exercise 31 in Chapter 7. Thus T and T* have the same eigenpairs
with the same multiplicities. From the paragraph above, T and T* have
the same eigenvalues with the same multiplicities. Because the determinant
equals the product of the eigenvalues (counting multiplicity) times the prod-
uct of the second coordinates of the eigenpairs (counting multiplicity), this
implies that det T* = det T = det T'.
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At this point, we know that det T* = det T regardless of whether F=C
or F = R. Thus

(det VT*T)? = (det VT*T)(det VT*T)
= det(T*T)
= (det T*)(det T
= (det T)(det T
= |det T2

Taking square roots (and recalling that the positive operator vT*T has a
nonnegative determinant), we have det vT*T = |det T, as desired.

25. Let a,b,c be positive numbers. Find the volume of the ellipsoid

2

2 ¢z
{(m,y,z)eR3:§+%+g<l}

by finding a set 2 C R whose volume you know and an operator T € £(R?)
such that T'(Q2) equals the ellipsoid above.

SOLUTION: Let E denote the ellipsoid defined above and let Q be the
ball with radius 1 defined by

Q={(z,y,2) e R : 22 + 42 + 2% < 1}.
Of course volume 2 = #n. Define T € L(R?) by
T(z,y, z) = (az, by, cz).
If (z,y,2) € Q, then

(«1;52)2 + (b;/z)2

(c2)?.

2

+ =z’ +y*+2°
<1,

which shows that T'(z,y,2) € E. Thus T(Q) C E.
Conversely, if (z,y, 2) € E, then

(Z)2+(%)2+(§)2=i— ‘hta
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which shows that (2, £, Z) € Q. Because T'(%,¥,2) = (z,y, 2), this implies
that E C T'(£2).
The last two paragraphs show that E = T(2). Thus

volume F = volume T'(Q2)
= |det T'|(volume Q)
4mwabe
=—3

where the second equality comes from 10.38.
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